HZLAB20221010返回 Back



LF00 DC/LF Electricity
HCS
code
Measured quantity, Range Frequency CMC Remarks
LF 11 Direct Voltage
1 V and 1.018 V
1.0·10-7·U Josephson standard
10 V 5·10-8·U Josephson standard
Gain
-1 mV – +1 mV
-10 mV – +10 mV
-100 mV – +100 mV
-1 V – +1 V
2.0·10-6·U
4·10-7·U
3·10-7·U
2·10-7·U
Gain of range of multimeter Josephson standard
In steps of about 145 microvolt.
Non linearity
-1 mV – +1 mV
-10 mV – +10 mV
-100 mV – +100 mV
-1 V – +1 V
2 nV
3 nV
5 nV
10 nV
Non-linearity of range of multimeter Josephson standard
In steps of about 145 microvolt.
Voltage ratio
-1 mV – +1 mV
-10 mV – +10 mV
-100 mV – +100 mV
-1 V – +1 V
2.0·10-6·U1/U2
3·10-7·U1/U2
5·10-8·U1/U2
1.0·10-8·U1/U2
Voltage ratio within range of multimeter
Josephson standard
In steps of about
145 microvolt.
Uncertainty scales with ratio for
U1 > U2
1 V and 1.018 V
10 V
1 mV
10 mV
100 mV
1 V
10 V
100 V
1 000 V
5·10-7·U
3·10-7·U
1.1·10-4·U
1.1·10-5·U
1.4·10-6·U
1.7·10-6·U
1.1·10-6·U
1.6·10-6·U
1.7·10-6·U
Zener reference
Zener reference
Measuring at multifunction facility
0 µV – 100 mV
100 mV – 10 V
10 V – 1 100 V
2.0·10-4·U – 3·10-6·U
+ 20 nV
3·10-6·U – 2.0·10-6·U
2.0·10-6·U – 5·10-6·U
Measuring at multifunction facility
1 mV
10 mV
100 mV
1 V
10 V
100 V
1 000 V
2.1·10-4·U
2.1·10-5·U
2.7·10-6·U
1.3·10-6·U
6·10-7·U
8·10-7·U
1.2·10-6·U
Generating at multifunction facility
0 µV – 1 mV
1 mV – 10 mV
10 mV – 100 mV
100 mV – 1 100 V
3·10-4·U + 20 nV
3·10-4·U – 3·10-5·U
3·10-5·U – 3·10-6·U
2.0·10-6·U
Generating at multifunction facility
LF 12 Direct Voltage Ratio
10V/V –1·106  V/V
1.0·10-5 V/V – 5·10-5 V/V Input 1 kV – 200 kV
LF 13 Direct High Voltage
1 kV – 200 kV
1.0·10-5·U – 5·10-5·U
LF 21 Direct Current
0.01 pA – 1 pA 1 pA – 20 pA 20 pA – 200 pA
0.2 nA – 2 nA  2 nA – 20 nA 20 nA – 200 nA
0.2 µA – 2 µA 2 µA – 20 µA
0.2 fA
5·10-5·I – 2.0·10-4·I
5·10-5·I
3·10-4·I – 1.0·10-4·I
1.0·10-4·I – 3·10-5·I
3·10-5·I
3·10-5·I – 9·10-6·I
7·10-6·I
Measuring
20 µA – 100 µA
0.1 µA – 100 mA
0.1 µA – 1 A
7·10-6·I – 5·10-6·I
5·10-6·I
8·10-5·I
Measuring at multifunction facility
0.01 pA – 1 pA 1 pA – 20 pA 20 pA – 200 pA
0.2 nA – 2 nA 2 nA – 20 nA
20 nA – 200 nA
0.2 fA
5·10-5·I – 2.0·10-4·I
5·10-5·I
3·10-4·I – 1.0·10-4·I
1.0·10-4·I – 3·10-5·I
3·10-5·I
Generating
0.2 µA – 2 µA 2 µA – 20 µA
20 µA – 100 µA
0.1 mA – 100 mA
0.1 A – 1 A 1 A – 10 A
10 A – 100 A
10 A – 900 A
3·10-5·I – 1.0·10-5·I
1.0·10-5·I
5·10-6·I – 3·10-6  I
3·10-6·I
6·10-5·I
1.0·10-4·I
7·10-6·I
7·10-6·I
Generating at multifunction facility
Generating at DC ratio facility Currents up to 900 A possible with devices that allow multiple turns
Measuring at DC ratio facility
LF 22 Direct Current Ratio
1∙10-4  – 1
1∙10-4  – 1
0.7∙10-6
0.4∙10-6
Primary current 1 A – 1200 A Primary current 1 A – 1200 A, linearity
LF 24 Direct Charge
10 pC – 200 pC
200 pC – 200 nC
2.0·10-3·Q – 4·10-4·Q
4·10-4·Q – 3·10-4·Q
LF 31 Alternating Voltage
1 mV – 100 mV
100 mV – 200 mV
200 mV – 2 V
2 V – 20 V
20 V – 30 V
30 V – 60 V
60 V – 200 V
200 V – 1 000 V
40 Hz – 100 kHz
10 Hz – 1 MHz
10 Hz – 1 MHz
10 Hz – 1 MHz
10 Hz – 500 kHz
10 Hz – 300 kHz
10 Hz – 100 kHz
10 Hz – 100 kHz
2.5·10-5·U – 3.0·10-3·U
2.0·10-5·U – 4·10-4·U
9·10-6·U – 4·10-4·U
9·10-6·U – 4·10-4·U
1.3·10-5·U – 4·10-4·U
1.5·10-5·U – 1.5·10-4·U
1.5·10-5·U – 9·10-5·U
1.8·10-5·U – 1.0·10-4·U
at multifunction facility
1 mV – 130 mV 10 Hz – 100 kHz 5·10-7·U – 5·10-4·U Josephson standard
LF 32 Alternating Voltage Ratio
1·10-7  V/V – 1 V/V
400 Hz – 1.6 kHz
400 Hz – 1.6 kHz
1.0·10-7  V/V (in-phase) 1.0·10-6  V/V (quadrature)
1·10-6  V/V – 1 V/V 50 Hz – 5 kHz
50 Hz – 5 kHz
2.0·10-6  V/V (in-phase) 1.0·10-5  V/V (quadrature)
1·10-3  V/V – 10 V/V 16 Hz – 45 Hz
45 Hz – 65 Hz
65 Hz – 300 Hz
2.5·10-5  V/V
1.0·10-5  V/V
3.0·10-5  V/V
Input voltage up to 700 V
1·10-6  V/V – 10 V/V 16 Hz – 45 Hz
45 Hz – 65 Hz
65 Hz – 300 Hz
3.0·10-5  V/V
2.0·10-5  V/V
2.0·10-4  V/V
Input voltage up to 100 kV
On-site: Input voltage up to 500 kV; for voltages above 230 kV, a HV capacitor with known voltage dependence needs to be supplied by the customer
Phase displacement D
(- to +) rad
45 Hz – 65 Hz 0.9·10-3  rad Input 1 kV – 100 kV
-0.1 rad – +0.1 rad 16 Hz – 45 Hz
45 Hz – 65 Hz
65 Hz – 300 Hz
2.5·10-5  rad + 5·10-3·D
1.0·10-5·rad + 5·10-3·D
3.0·10-5  rad + 5·10-3·D (D in rad)
Input voltage up to 100 kV
On-site: Input voltage up to 500 kV; for voltages above 230 kV, a HV capacitor with known voltage dependence needs to be supplied by the customer
LF 33 Alternating High Voltage
1 kV – 100 kV
45 Hz – 65 Hz 110-4U
LF 34 AV/DV Transfer
10 mV – 20 mV
20 mV – 100 mV
0.1 mV – 0.2 V
0.2 mV – 0.5 V
0.5 V – 1 V 1 V – 10 V 10 V – 30 V
30 V* – 60 V*
60 V – 100 V
100 V – 1 000 V
10 Hz – 1 MHz
10 Hz – 1 MHz
10 Hz – 1 MHz
10 Hz – 1 MHz
10 Hz – 1 MHz
10 Hz – 1 MHz
10 Hz – 1 MHz
10 Hz – 500 kHz
10 Hz – 300 kHz
10 Hz – 100 kHz
4·10-4·U – 8·10-5·U
3·10-4·U – 2.0·10-5·U
2.0·10-4·U – 1.5·10-5·U
1.0·10-4·U – 5·10-6·U
4·10-5·U – 2.0·10-6·U
2.0·10-6·U – 4·10-5·U
5·10-6·U – 6·10-5·U
1.0·10-5·U – 5·10-5·U
1.0·10-5·U – 4·10-5·U
1.0·10-5·U – 1.0·10-4·U
*) Max. 2.2  107 VHz
LF 41 Alternating Current
200 µA"
2 mA
20 mA
200 mA
2 A
10 A
10 Hz – 10 kHz
10 Hz – 10 kHz
10 Hz – 10 kHz
10 Hz – 10 kHz
10 Hz – 10 kHz
10 Hz – 10 kHz
1.0·10-3·I – 3·10-5·l
2.3·10-4·I – 5·10-5·I
2.3·10-4·I – 6·10-5·l
2.3·10-4·I – 8·10-5·I
1.5·10-4·I – 2.3·10-4·I
2.1·10-4·I – 5·10-4·I
at multifunction facility
5 A – 5 000 A 16 Hz – 45 Hz
45 Hz – 65 Hz
65 Hz – 200 Hz
200 Hz – 400 Hz
20·10-6 · I
20·10-6 · I
25·10-6 · I
35·10-6 · I
at current ratio facility
LF 42 Alternating current ratio
Magnitude ratio error 0 – 1
16 Hz – 45 Hz
45 Hz – 65 Hz
65 Hz – 200 Hz
200 Hz – 400 Hz
7·10-6
5·10-6
1.0·10-5
1.5·10-5
Primary current from 1 mA – 8 kA Increased uncertainty for current-to- voltage transducers
Phase displacement
- rad – + rad
16 Hz – 45 Hz
45 Hz – 65 Hz
65 Hz – 200 Hz
200 Hz – 400 Hz
7·10-6  rad 5·10-6  rad 1.0·10-5  rad
1.5·10-5  rad
Primary current from 1 mA – 8 kA
LF 44 AC/DC Transfer
10 mA – 500 mA
0.5 A – 5 A 5 A – 20 A
10 Hz – 100 kHz
10 Hz – 100 kHz
10 Hz – 100 kHz
3·10-5·l – 1.3·10-4·I
4·10-5·l – 2.5·10-4·I
7·10-5·l – 7·10-4·l
LF 50 Power quality IEC 61000-4-30
Voltage unbalance 0 % – 100 % 50 Hz or 60 Hz 0.03 %
Harmonics and interharmonics 0.1 V – 250 V
1 mA – 20 A
40 Hz – 5000 Hz 0.01 V – 0.03 V
0.1 mA – 2 mA
resolution 5 Hz
resolution 5 Hz
Total harmonic distortion
0.01 % – 100 %
40 Hz – 5000 Hz 0.001 % – 0.02 % Voltage or current
Voltage fluctuations 0.01 % – 10 % 50 Hz – 60 Hz 0.001 % – 0.003 % 10 mHz – 40 Hz modulation;
Pst  from 0.2 – 10
(IEC 61000-4-15)
LF 50 Active power 0 kW – 48 kW 45 Hz – 65 Hz 1.510-5  W/VA 1 V – 600 V
1 mA – 80 A
0  cos(φ)  1 inductive or capacitive Minimum apparent power 1 mVA
0 MW – 500 MW 45 Hz – 65 Hz 5·10-5  W/VA Single phase
0.05 kV – 100 kV 0.1 A – 5 000 A
0  cos(φ)  1, inductive or capacitive Minimum apparent power 5 VA
0 GW – 1.5 GW 45 Hz – 65 Hz 5·10-5  W/VA Three-phase
0.05 kV – 100 kV 0.1 A – 5 000 A
0  cos(φ)  1, inductive or capacitive Minimum apparent power 15 VA
0 MW – 200 MW 45 Hz – 65 Hz 2.0·10-5  W/VA Single phase – Loss Power
0.1 kV – 230 kV 0.1 A – 2 000 A
0  cos(φ)  1, inductive or capacitive Minimum apparent power 10 VA
0 MW – 600 MW 45 Hz – 65 Hz 2.0·10-5  W/VA Three-phase – Loss Power
0.1 kV – 230 kV 0.1 A – 2 000 A
0  cos(φ)  1, inductive or capacitive Minimum apparent power 10 VA
Apparent power 1 mVA – 48 kVA 45 Hz – 65 Hz 1.510-5  VA/VA 1 V – 600 V
1 mA – 80 A
5 VA  – 500 MVA 45 Hz – 65 Hz 5·10-5  VA/VA Single phase
0.05 kV – 100 kV 0.1 A – 5 000 A
15 VA – 1.5 GVA 45 Hz – 65 Hz 5·10-5  VA/VA Three-phase
0.05 kV – 100 kV 0.1 A – 5 000 A
Energy
0 MWh – 8 MWh 45 Hz – 65 Hz 5·10-5  Wh/VAh – 3·10-4
Wh/VAh
Single phase 30 V – 600 V
0.02 A – 80 A
0  cos(φ)  1, inductive or capacitive Minimum apparent power 0.6 VA Measurement time 1 min – 1 Week
0 MWh – 24 MWh 45 Hz – 65 Hz 5·10-5  Wh/VAh – 3·10-4
Wh/VAh
Three-phase
30 V – 600 V Line to Ground
0.02 A – 80 A per phase
0  cos(φ)  1, inductive or capacitive Minimum apparent power 1.8 VA Measurement time 1 min – 1 Week
0 GWh – 84 GWh 45 Hz – 65 Hz 5·10-5  Wh/VAh – 3·10-4
Wh/VAh
Single phase
0.05 kV – 100 kV 0.1 A – 5 000 A
0  cos(φ)  1, inductive or capacitive Minimum apparent power 5 VA Measurement time 1 min – 1 Week
0 GWh – 252 GWh 45 Hz – 65 Hz 5·10-5  Wh/VAh – 3·10-4
Wh/VAh
Three-phase
0.05 kV – 100 kV Line to Ground
0.1 A – 5 000 A per phase
0  cos(φ)  1, inductive or capacitive Minimum apparent power 15 VA Measurement time 1 min – 1 Week
LF 51 Power factor/cos(φ)
0 – ±1 45 Hz – 65 Hz 1.0·10-6  – 3.5·10-6
LF 62 DC Resistance
1 µΩ
10 µΩ
100 µΩ
1 mΩ
10 mΩ
100 mΩ
4·10-5·R
4·10-6·R
1.5·10-6·R
1.0·10-6·R
4·10-7·R
2.0·10-7·R
1 Ω
10 Ω
25 Ω
100 Ω
1 kΩ
10 kΩ
5·10-8·R
3·10-8·R
3·10-8·R
2.0·10-8·R
2.0·10-8·R
2.0·10-8·R
6.45 kΩ
12.9 kΩ 100 kΩ 1 MΩ
3·10-8·R
3·10-8·R
4·10-7·R
5·10-7·R
10 MΩ
100 MΩ
1 GΩ
10 GΩ
100 GΩ
8·10-7·R
2.0·10-6·R
4·10-6·R
4·10-6·R
8·10-6·R
1 TΩ
10 TΩ
100 TΩ
1 PΩ
10 PΩ
1.5·10-5·R
7.5·10-5·R
1.5·10-4·R
1.0·10-2·R
1.0·10-1·R
1 Ω
10 Ω
100 Ω
1 kΩ
10 kΩ
100 kΩ
1 MΩ
10 MΩ
100 MΩ
7·10-5·R
2.0·10-5·R
1.5·10-5·R
1.0·10-5·R
1.0·10-5·R
1.0·10-5·R
1.5·10-5·R
6·10-5·R
6·10-4·R
Measuring at multifunction facility
0 Ω – 10 kΩ
10 kΩ – 100 MΩ
4·10-5·R – 2.0·10-5·R + 10
µΩ
2.0·10-5·R – 7·10-4·R
Measuring at multifunction facility
0 Ω
1 and 1.9 Ω
10 and 19 Ω
100 and 190 Ω
1 and 1.9 kΩ
10 and 19 kΩ
100 and 190 kΩ
1 and 1.9 MΩ
10 and 19 MΩ
100 MΩ
5 µΩ 1.8·10-5·R
5·10-6·R
1.7·10-6·R
2.4·10-6·R
2.4·10-6·R
4·10-6·R
7·10-6·R
2.2·10-5·R
1.0·10-4·R
Generating at multifunction facility
Temperature coefficient
0 µΩ/Ω/K – 5 µΩ/Ω/K 0.015 µΩ/Ω/K 1 Ω – 10 kΩ
15 C – 30 C
5 µΩ/Ω/K – 200
µΩ/Ω/K
0.015 µΩ/Ω/K – 0.3 µΩ/Ω/K 1 Ω – 10 kΩ
15 C – 30 C
0 µΩ/Ω/K – 5 µΩ/Ω/K 0.1 µΩ/Ω/K 10 kΩ – 10 MΩ
15 C – 30 C
5 µΩ/Ω/K – 200
µΩ/Ω/K
0.1 µΩ/Ω/K – 0.3 µΩ/Ω/K 10 kΩ 10 MΩ
15 C – 30 C
LF 63 AC Resistance Real component
0   0 
0   0 
10  – 100 
10  – 100 
100  – 1 k
100  – 1 k
1 k – 10 k
1 k – 10 k
10 k – 100 k
10 k – 100 k
100 k – 1 M
100 k – 1 M
50 Hz – 2 kHz
2 kHz – 10 kHz
50 Hz – 2 kHz
2 kHz – 10 kHz
50 Hz – 2 kHz
2 kHz – 10 kHz
50 Hz – 2 kHz
2 kHz – 10 kHz
50 Hz – 2 kHz
2 kHz – 10 kHz
50 Hz – 2 kHz
2 kHz – 10 kHz
2 m - 5 m
2 m - 10 m
3·10-5·R – 2.0·10-4·R
6·10-5  ·R – 1.0·10-3·R
2.0·10-5·R – 1.4·10-4·R
4·10-5·R – 7·10-4·R
1.0·10-5·R – 4·10-5·R
1.4·10-5·R – 5·10-4·R
1.0·10-5·R – 1.0·10-4·R
1.4·10-5·R – 1.6·10-4·R
2.0·10-5·R – 1.4·10-4·R
4·10-5·R – 7·10-4·R
AC Resistance Imaginary component
-1.0 m/ – +1.0 m/ for
Rnom  = 10  – 100 
-1.0 m/ – +1.0 m/ for
Rnom  = 100  – 1 k
-1.0 m/ – +1.0 m/ for
Rnom  = 1  k – 10 k
-1.0 m/ – +1.0 m/ for
Rnom  = 10  k – 100 k
-1.0 m/ – +1.0 m/ for
Rnom  = 100 k – 1 M
50 Hz – 2 kHz
2 kHz – 10 kHz
50 Hz – 2 kHz
2 kHz – 10 kHz
50 Hz – 2 kHz
2 kHz – 10 kHz
50 Hz – 2 kHz
2 kHz – 10 kHz
50 Hz – 2 kHz
2 kHz – 10 kHz
1.3·10-4·R – 5·10-4·R
3·10-4·R – 1.4·10-3·R
1.0·10-4·R – 3·10-4·R
2·10-4  – 1.0·10-3·R
3·10-5·R – 2.0·10-4·R
6·10-5·R – 7·10-4·R
3·10-5·R – 2·10-4·R
6·10-5·R – 7·10-4·R
1.0·10-4·R – 3·10-4·R
1.4·10-4·R – 1.0·10-3·R
Values and uncertainties are given as relative values with respect to the nominal resistance value Rnom
LF 64 Capacitance
10 pF
100 pF
1 pF – 1 000 pF
10 nF – 1 µF
1 kHz; 1.592 kHz
1 kHz; 1.592 kHz
1 kHz
1 kHz
3·10-7·C
3·10-7·C
5·10-6·C
1.0·10-5·C – 5·10-5·C
For measurements made using a three terminal configuration.
Measurements can also be made in a two terminal configuration over the same capacitance and frequency range but the uncertainties will be increased.
0 pF
0 pF
1 pF
1 pF
10 pf
10 pF
100 pF
100 pF
1 nF
1 nF
10 nF
10 nF
100 nF
100 nF
1 µF
1 µF
50 Hz – 1 kHz
1 kHz – 10 kHz
50 Hz – 1 kHz
1 kHz – 10 kHz
50 Hz – 1 kHz
1 kHz – 10 kHz
50 Hz – 1 kHz
1 kHz – 10 kHz
50 Hz – 1 kHz
1 kHz – 10 kHz
50 Hz – 1 kHz
1 kHz – 10 kHz
50 Hz – 1 kHz
1 kHz – 10 kHz
50 Hz – 1 kHz
1 kHz – 10 kHz
0.1 fF – 5 aF 5 aF – 0.04 fF
1.0·10-4·C – 5·10-6·C
5·10-6·C – 4·10-5·C
8·10-5·C – 3·10-6·C
3·10-6·C – 4·10-5·C
8·10-5·C – 3·10-6·C
3·10-6·C – 4·10-5·C
8·10-5·C – 5·10-6·C
5·10-6·C – 6·10-5·C
1.5·10-4·C – 1.0·10-5·C
1.0·10-5·C – 1.5·10-4·C
3·10-4·C – 2.0·10-5·C
2.0·10-5·C – 3.1·10-4·C
6·10-4·C – 5·10-5·C
5·10-5·C – 7·10-4·C
LF 65 10 pF – 100 nF 45 Hz – 65 Hz 2.0·10-5·C Input voltage 1 kV – 100 kV Current 5 µA – 10 A
LF 67 Inductance
0 µH 1 kHz 0.1 µH
100 µH 1 kHz 3·10-4·L
1 mH 1 kHz 2.0·10-4·L
10 mH 1 kHz 2.0·10-4·L
100 mH 400 Hz
1 kHz
1.592 kHz
1.5·10-4·L
1.5·10-4·L
1.5·10-4·L
1 H 100 Hz
200 Hz
400 Hz
1 kHz
1.592 kHz
3·10-4·L
2.0·10-4·L
1.5·10-4·L
1.5·10-4·L
1.5·10-4·L
10 H 100 Hz
200 Hz
400 Hz
1 kHz
3·10-4·L
2.0·10-4·L
1.5 ·10-4·L 2.0·10-4·L
LF 68 Dissipation factor DF
-0.1  – 0.1
45 Hz – 65 Hz 1.0·10-5  + 5·10-3·DF Input voltage 1 kV – 100 kV Current 5 µA – 10 A
RF 21 Impedance
(reflection factor)
|ρ |  1
9 kHz – 18 GHz
9 kHz – 18 GHz
9 kHz – 33 GHz
9 kHz – 40 GHz
9 kHz – 50 GHz
0.002 + 0.001·ρ2 
0.003 + 0.001·ρ2
0.003 + 0.001·ρ2 
0.004 + 0.001·ρ2
0.003 + 0.001·ρ2 
0.004 + 0.002·ρ2
0.005 + 0.003·ρ2 
0.012 + 0.004·ρ2
0.003 + 0.003·ρ2 
0.005 + 0.004·ρ2
GPC7 (50 Ω)
Type-N (50 Ω)
3.5 mm (50 Ω)
Type-K 2.92 mm (50 Ω)
2.40 mm (50 Ω)
RF 22 Attenuation
L = 0 dB – 50 dB L = 50 dB – 60 dB L = 60 dB – 70 dB L = 70 dB – 80 dB 50 kHz – 18 GHz (0.010 + 0.001·L) dB
0.080 dB – 0.090 dB
0.180 dB – 0.220 dB
0.550 dB – 0.680 dB
GPC7, Type-N (50 Ω)
L = 0 dB – 50 dB
L = 50 dB – 60 dB
50 kHz – 33 GHz (0.010 + 0.001·L) dB
0.080 dB – 0.120 dB
3.5 mm (50 Ω)
L = 0 dB – 50 dB
L = 50 dB – 60 dB
50 kHz – 40 GHz (0.010 + 0.001·L) dB
0.080 dB – 0.120 dB
Type-K 2.92 mm (50 Ω)
L = 0 dB – 50 dB
L = 50 dB – 60 dB
50 kHz – 50 GHz (0.010 + 0.001·L) dB
0.080 dB – 0.120 dB
2.40 mm (50 Ω)
RF 30 RF Power
Calibration Factor 0 – 1 9 kHz – 18 GHz
9 kHz – 33 GHz
9 kHz – 50 GHz
0.005·K – 0.015·K
0.005·K – 0.020·K
0.005·K – 0.030·K
GPC7, Type-N (50 Ω)
3.5 mm (50 Ω)
2.40 mm (50 Ω)
cf = Calibration factor
P = 1 μW – 10 mW
Absolute Power 1 μW – 10 mW 9 kHz – 18 GHz
9 kHz – 33 GHz
9 kHz – 50 GHz
0.005·P – 0.015·P
0.005·P – 0.020·P
0.005·P – 0.030·P
GPC7, Type-N (50 Ω)
3.5 mm (50 Ω)
2.40 mm (50 Ω)
TF 11
Local clock versus UTC (VSL)
0 ns – 1 s
1.0 ns 2 Um = 0.1 V – 10 V
tavg ≥ 10 ks
Local clock versus UTC 0 ns – 1 s 10 ns 2 Um = 0.1 V – 10 V
tavg ≥ 10 ks
Local clock versus UTC NTP time server
-1 s to +1 s
0.5 ms Via Network Time Protocol (NTP)
On location
Local clock versus UTC PTP time server
-1 s to +1 s
1 µs Via Precision Time Protocol
On location
TF 21 Frequency
Frequency measurement 5; 10 MHz 2.0·10-13·f 2 Um  = 0.1 V – 1 V
tavg ≥ 10 ks
1 mHz – 1.3 GHz 2.0·10-10·f ∕ (gate time s) 2 Um  = 0.1 V – 1 V
gate time = 1 µs – 10 ks
1.3 GHz – 26 GHz 1.0 Hz level: -10 dBm – +7 dBm
Frequency difference (0.1; 1; 2.5; 5; 10) MHz 1.0·10-11·f ∕ √(tavg  in s) 2 Um  = 0.1 V – 1 V
tavg = 0.1 s – 10 ks
Frequency generation 1, 5, 10 MHz 2.0·10-13·f Ueff ≥1 V
tavg ≥ 10 ks
1 kHz – 4.3 GHz 1.0·10-11·f ∕ √(tavg  in s) level: -140 dBm – +13 dBm
tavg = 0.1s – 10 ks
4 GHz – 26 GHz 1 Hz level: -60 dBm – +13 dBm
TF 22 Time interval
Single shot
0 ns – 1 000 s
1.0 ns + trigger error 2 Um  = 0.1 V – 10 V
Period
0 ns – 1 000 s
100 ps 2 Um  = 0.1 V – 10 V periodic signals
Stopwatches, time base
0.01 s/d – 300 s/d
0.010 s/d
Oscilloscopes, time base 1.0·10-7  s/s
TF 22 Time interval
Time delay of optical components
0 ps – 1 µs
50 ps Optical component used in CWDM / DWDM optical fibre networks.
Time delay between a 1pps output of locked pair of White Rabbit master and slave
-2 ns to 2 ns
0.1 ns The length of the optical fibre link between the White Rabbit master and slave is less than 10 m
Optical fibre delay asymmetry from chromatic dispersion
-50 ns to 50 ns
0.1 ns Wavelengths between 1310 nm and 1610 nm. The product of fibre length in km and wavelength difference in nm > 10.
TF 24 Rise time
10 ps – 1 ns
1 ns – 1 µs
2.5 ps – 0.035 ns
0.035 ns – 0.035 µs
Um  = 0.01 V – 0.25 V
trep < 200 kHZ
Ugen  terminated in 50 
0.1 ns – 10 ns 10 ns – 1 µs 0.035 ns – 0.22 ns
0.22 ns – 21 ns
Um  = 0.25 V – 5 V
Ugen  terminated in 50 
DM 01 Laser wavelength
vacuum wavelength absolute frequency 633 nm
474 THz
0.04 fm 24 kHz Stabilised laser of the “mise en pratique”.
Optical beat frequency
vacuum wavelength, 0 633 nm 1·10-90 Stabilised laser. Optical beat frequency
Laser interferometer counting system 0 m – 50 m Q[0.01 ; 210-8L] µm, L
in m
Comparison with reference interferometer
Environmental sensors and optics of laser interferometer not taken into account
MRA NMI Service Identifier 3
Laser frequency 474 THz 4 kHz Stabilized laser of Mise en Pratique with  optical femtosecond comb generator; sample time 10 s
Laser  vacuum wavelength 633 nm 5.4 am Stabilized laser of Mise en Pratique with  optical femtosecond comb generator; sample time 10 s
Laser frequency 563 THz 4.4 kHz Stabilized laser of Mise en Pratique with  optical femtosecond comb generator; sample time 10 s
Laser vacuum wavelength 532 nm 4.2 am Stabilized laser of Mise en Pratique with  optical femtosecond comb generator; sample time 10 s
laser frequency, 0 330 THz – 577 THz 1·10-9·0 Stabilized laser with optical femtosecond comb generator; sample time 10 s
laser vacuum wavelength, 0 530 nm – 1 000 nm 1·10-9·0 Stabilized laser with  optical femtosecond comb generator; sample time 10 s
DM 10 Gauge blocks central length steel
tungsten carbide
0.1 mm – 125 mm
0.1 mm – 125 mm
Q[20 nm ; 2.210-7L]
Q[20 nm ; 1.510-7L]
Interferometry, exact fractions MRA NMI Service Identifier 13
Gauge blocks central length steel
tungsten carbide
100 mm – 1 000 mm
100 mm – 1 000 mm
Q[20 nm ; 2.0·10-7L]
Q[20 nm ; 1.3·10-7·L]
Interferometry, exact fractions
DM 10 Gauge blocks central length steel
tungsten carbide
0.1 mm – 100 mm
0.1 mm – 100 mm
Q[0.044 µm;0.91·10-6· L] Q[0.044 µm;0.91·10-6· L] Mechanical comparison
with reference gauges of the same nominal length and the same material
Gauge blocks length difference 1 mm – 100 mm Q[0.015 µm; 0.2 10-6·L] Interferometry, exact fractions
Gauge blocks coefficient of thermal expansion -5·10-6     +30·10-6   K-1 ≥ 5.5·10-8  K-1 Interferometry, exact fractions Length artefact:
25 mm – 1 000 mm Temperature range:
18 C – 22 C
MRA NMI Service Identifier 15
Length bar
(circular cross section): central length
100 mm – 1 000 mm Q[0.22 µm;1.18·10-6·L] CMM and laser Interferometer
Gauge blocks central length 100 mm – 1 000 mm Q[0.22 µm ;1.18·10-6·L] CMM and laser Interferometer
Gauge blocks central length 100 mm – 500 mm Q[0.056 µm; 0.82·10-6
·L]
Mechanical comparison
Step gauges Front faces Rear faces Parallelism 0 mm – 1 100  mm Q[0.12 µm ; 0.65·10-6 ·L] Q[0.12 µm ; 0.65·10-6 ·L] Q[0.15 µm] CMM and laserinterferometer
Depth (groove) standard (ISO 5436-1 (1985)
type A):
step height (depth) H
0 nm – 3 000 nm Q[1.4 nm ; 14·10-3·H] Interference microscope Minimum groove width: 100 µm
Thermal expansion artefact
(step gauges and others):
coefficient of thermal expansion
-510-6     +30·10-6  K-1 1.5·10-7  K-1 CMM, laser interferometer with plane mirror
Cross section: (5 × 5) mm to (50 × 100) mm
Length artefact:
25 mm – 1000 mm
Temp range: 16 C – 26 C
Thermal expansion artefact:
coefficient of thermal expansion
-510-6     +30·10-6   K-1 5.5·10-8  K-1 Interferometry, exact fractions Cross section: (5 × 5) to
(20 × 35) mm2
Length artefact:
150 mm – 1 000 mm
Temp range: 18 C – 22 C
DM 20 Precision line scales: line spacing Up to 1020 mm expansion coefficient
 = 8·10-6  K-1
 = 3·10-8  K-1
Q[0.03 μm ; 5·10-7·L]
Q[0.03 μm ; 1.7·10-7·L]
1-D measuring machine, CCD microscope,
laser interferometer
Precision line scales: line spacing 0 m – 2 m
0 m – 3 m
0 m – 4 m
Q[0.62 µm ; 3.0·10-6·L] Q[0.80 µm ; 3.0·10-6·L] Q[0.98 µm ; 3.0·10-6·L] 1-D measuring machine, CCD microscope,
laser interferometer
Levelling rod: line spacing 0 m – 3 m Q[20 µm ; 5·10-6·L] 1-D measuring machine, optical sensor, line scale
Levelling rod: spacing between reference line and support 0 mm – 100 mm 20 µm 1-D measuring machine, optical microscope, line scale
DM 30 Length measuring instrument displacement L 0 m – 20 m Q[0.2 µm ; 1.010-6L] Laser interferometer
Height measuring instrument: error of indicated displacement L 0 m – 2 m Q[0.22 µm ; 1710-7L] Laser interferometer
Displacement transducers (inductive, incremental e.g.): displacement L 0 µm – 12 µm 8 nm Digital piezo transducer
Displacement transducers (inductive, incremental e.g.): displacement L 0 mm – 100 mm Q[0.06 µm ; 1.010-6L] 1D measuring machine with laser interferometer. resolution: 0.01 µm
displacement: 100 mm
1D displacement actuator (dial gauge tester): displacement 0 mm – 25 mm Q[0.09 µm ; 1.410-6L] Laser interferometer
Measuring projector: error of indicated length error of indicated angle squareness of measurement axis 10 mm – 200 mm
0 ° – 360 °
3 “ – 3 600 “
Q[0.4 µm ; 2.2·10-6·L]
2.6 ’ 19 ”
Grid plate
Max. area: (200 × 200) mm MRA NMI Service Identifier 65
Gauge block mechanical comparator:
error of indicated difference D
-6 µm – +6 µm 17 nm Gauge block set
Max gauge block length 100 mm
Laser distance meter (EDM)
error of indicated distance L
500 mm – 50 000 mm Q[0.7 mm ; 1.5·10-2  ·L] 50 m measuring bench with laserinterferometer.
L in mm
DM 40 Diameter
External cylinders (plug gauge, piston): diameter D 2.5 mm – 400 mm Q[0.20 µm ; 0.88·10-6
·D]
CMM and laser interferometer
External cylinders (wires, pin): diameter D 0.1 mm – 100 mm Q[0.20 µm; 1.07·10-6
·D]
0] µm;1.07·10-6·D]
1-D measuring machine with laser interferometer. Repeatability ≤ 0.05 µm
Influence roundness deviation
≤ 0.03 µm
Internal cylinders (ring): diameter D 1.5 mm – 4 mm Q[0.20 µm ; 0.88·10-6·
D]
CMM, laser interferometer with plane mirror
Internal cylinders (ring): diameter D 4 mm – 400 mm Q[0.10 µm ; 1.1·10-6·D] CMM, laser interferometer with plane mirror
Spheres (ball): diameter D 12 mm – 60 mm Q[0.10 µm ; 0.8·10-6·D] CMM, laser interferometer with plane mirror
Diameter standards (ball):
diameter D
0.5 mm – 12 mm 0.030 µm Interferometry exact fractions, indentation correction Uncertainty in nm
D: Diameter in mm
Spheres (ball): diameter D 0.5 mm – 1.5 mm
1.5 mm – 15 mm
0.30 µm
0.28 µm
1D measuring machine with laser interferometer, reference ball
DM 50 Form error
90 steel/granite square: squareness
straightness
90 
0 µm – 500 µm
1 µm
0.2 µm
Reversal technique on a CMM Orientation: horizontal
Max. size: 1 200 mm × 400 mm
90 cylinder square: Squareness 90  0.5 µm (1.5 ”) Reversal technique on a CMM Orientation: horizontal
Max. length: 1 200 mm
Diameter: 50 mm – 300 mm
90 cylinder square: Straightness 0 µm – 500 µm 0.2 µm Reversal technique on a CMM Orientation: horizontal
Max. length: 1 200 mm
Diameter: 50 mm – 300 mm
Optical flat: Flatness 0 µm – 0.3 µm 22 nm Fizeau interferometer Diameter: 10 mm – 100 mm
DM 50 Optical flat: Flatness 0 µm – 25 µm Q[0.032 µm ; 1.8·10-10
·D]
CMM with electronic levels Diam.: 100 mm – 400 mm D = diameter
Optical flats: combined parallelism/flatness 0 µm – 12 µm 0.044 µm Gauge block comparator Diameter: 10 mm – 60 mm
Surface plate: Flatness 0 µm – 250 µm Q[0.32 µm ; 6·10-8·L] Electronic levels Minimum size L × L:
0.1 m × 0.1 m
L = length of the longest side of the surface plate
MRA NMI Service Identifier 49
Cylindrical artefacts + spheres (ball): roundness deviation R 0 µm – 2 µm 60 nm + 0.03·R Roundness measuring machine, spindle correction. Diameter external cylinders (plugs): 2.5 mm – 160 mm Diameter internal cylinders (rings): 4 mm – 160 mm
Sphere (hemispheres): roundness deviation R 0 µm – 1 µm 10 nm + 0.030·R Roundness measuring machine, error separation Diameter: 2.5 mm – 160 mm
Straightness artefacts: straightness deviation 0 µm – 500 µm 0.2 µm Electronic levels; Cylindrical artefacts:
Length: 100 mm – 1 100 mm
Diameter: 20 mm – 300 mm Cubic artefacts, length:
100 mm – 3 000 mm Width:  25 mm
Levelling rod:
form deviation of support
0 µm – 1 mm 20 µm CMM
DM 90 Angle
Autocollimator:
error of indicated angle
0 ’ – 14 ” 0.1 ” Sine bar, dial gauge tester MRA NMI Service Identifier 34
Electronic level: error of indicated inclination angle 0 µm/m –
4 000 µm/m
0.5 µm/m Sine bar, dial gauge tester MRA NMI Service Identifier 35
Clinometers: error of indicated inclination  angle 0  – 360  0.012 ° Index table
Theodolite
Horizontal Angle 0 GON – 400 GON 2 mGON Autocollimator and Index Table
0 ° – 360 ° 6 “ Theodolite turned around
Vertical Angle -33.3 GON – + 33.3 GON 2 mGON
- 0 ° – + 30° 6”
Deviation from level See Telescopic level 50 m measuring bench
position
Telescopic level 1’ 0,4”
DM100 Angle gauges: included angle 0  – 180 ° 0.5 ” Autocollimator and rotary table
Optical polygons: face angle 5  – 120 ° 0.2 ” 2 autocollimators, full closure No. of faces: 3 – 72
Optical square (pentaprism): deviation angle 90  0.2 ” 2 autocollimators, full closure
MW 10 Mass
HCS
code
Quantity, Instrument, Measure Measuring range Remarks
MW 11 Mass 1 mg – 100 mg stainless steel mass standards
0.1 g – 1 g
1 g – 10 g
10 g – 100 g
0.1 kg – 1 kg
1 kg – 10 kg
10 kg – 20 kg
PV 00
Pressure and Vacuum
HCS
code
Quantity, Instrument, Measure Measuring range Remarks
PV 11 Absolute pressure 5 kPa – 350 kPa
350 kPa – 7 000 kPa
7 MPa* – 20 MPa*
Gas Gas Gas
PV 12 Gauge pressure 0 kPa – 500 kPa
0.5 MPa – 20 MPa
0.019 Pa + 15·10–6·pe
0.06 Pa + 15·10–6·pe
Gas Gas
Differential pressure 0 MPa – 10 MPa 4Pa + 4·10-5·pd  +
1,2·10-6·pl
Gas, max. Line pressure 10 MPa
pd= differential pressure
pl = Line pressure
Negative Gauge pressure -0.5 kPa – -100 kPa 5·10–5·pe Gas
PV 21 Absolute pressure 1 MPa* – 80 MPa*
80 MPa* – 500 MPa*
6 Pa + 4·10-5·p
25 Pa + 65·10-6·p
Oil Oil
PV 22 Gauge pressure 1 MPa – 80 MPa
80 MPa – 500 MPa
0.18 Pa +15·10–6·pe 27 Pa + 54·10–6·pe Oil Oil
pe  = p – pamb;
pe  = gauge pressure,
pamb  = ambient pressure
* Pressure balance + barometer
DV 10                                                        
 Density, Viscosity
HCS
code
Measuring range CMC* Remarks
DV 10
DV 11 600 kg/m3  – 1000 kg/m3 0.02% Liquids, water
DV 12 0.6 mm2/s – 47 000 mm2/s 0.1 % – 0.5 % Newtonian liquids, 15 °C  – 60 °C
HCS
code
Quantity, Instrument, Measure Measuring range CMC* Remarks
VL 11 Volume capacity measures 0.001 L – 3 000 L 10 L – 3 000 L 0.5 L – 200 L 0.02 % – 0.01 %
0.02 %
0.02 %
Dordrecht, on location
Weighing method Master meter Volumetric method
Pipettes 1 mL – 25 L 0.005 % – 0.02 % Weighing method
Burettes 1 mL – 1 L 0.005 % – 0.02 % Weighing method
Provers (water + mineral products) 1 L – 650 L
10 L – 650 L
100 L – 30 000 L
0.01 % – 0.02 %
0.02 % – 0.04 %
0.02 % – 0.04 %
Weighing method Reference volume Master meter
Sinkers (water) 10 cm3 – 200 cm3 0.01 % – 0.02 % Weighing method
Pyknometers (water) 10 cm3  – 200 cm3 0.01 % – 0.02 % Weighing method
FG 11 Gas Flow rate Delft
Low Pressure Gas 210-5 m3/h – 1810-3  m3/h
1810-3  m3/h – 3.5 m3/h
0.40 %
0.20 %
Displacement prover system Displacement prover system
1 m3/h – 400 m3/h 0.09 % Displacement prover system
1610-3 m3/h – 16 m3/h 0.2 % – 0.4 % Master meter method
15 m3/h – 15 000 m3/h 0.15 % Master meter method
High Pressure Gas 5 m3/h – 230 m3/h 0.29 % – 0.06 % Gas Oil Piston Prover
High Pressure Natural Gas 5 m3/h – 20 m3/h
20 m3/h – 2 000 m3/h
0.30 % – 0.1 %
0.1 %
VSL Traceability System (2 mobile transfer units)
FG 13 Velocity of gases
Air velocity 0.1  m/s – 1.0 m/s 3.2/v – 1.2 % Delft
1 m/s – 2 m/s 0.02 Delft
2 m/s – 35 m/s 0.01 Delft
FL 11 Mass flow rate Dordrecht
Mass flow meters (water) 0.001 t/h – 400 t/h 0.02 % – 0.025 % Weighing method
0.8 t/h – 400 t/h 0.02 % – 0.025 % Pipe prover method
0.1 t/h – 400 t/h 0.04 % – 0.045 % Master meter method
FL12 Volume flow rate Dordrecht
flow meters (water) 0.001 m3/h – 400 m3/h 0.02 % – 0.025 % Weighing method
0.8 m3/h – 400 m3/h 0.02 % – 0.025 % Pipe prover method
0.1 m3/h – 400 m3/h 0.04 % – 0.045 % Master meter method
OQ 10 Optical Quantities
HCS
code
CMC* Remarks
OQ 11 Measuring range < 1 mW 0.5 % 488, 532, 543, 633 nm
1 mW – 10 mW 0.8 % Reference Detector
100 µW/cm2  – 10 mW/cm2 0.1 365 nm
Reference Detector
AW-1m2, VW-1m2 0.3 % 400 nm – 950 nm, Reference
detector, Scanning spot
method
counts W-1m2 0.3 % to 4 % Spectroradiometer
250 nm to 700 nm
< 1 mW Reference detector
300 nm – 380 nm 0.38 % – 0.29 %
380 nm – 450 nm 0.29 % – 0.07 %
450 nm – 900 nm 0.07 %
900 nm – 950 nm 0.07 % – 0.11 %
950 nm – 1000 nm 0.11 % – 0.43 %
1000 nm – 1250 nm 0.9 % – 0.4 %
1250 nm – 1500 nm 0.4 %
1500 nm – 1600 nm 0.4 % – 1.5 %
Radiant flux, spectral 380 nm – 780 nm 1.4% – 5.3% Integrating sphere, Tungsten Source, LED Source
Irradiance, spectral 250 nm – 400 nm
400 nm – 700 nm
700 nm – 1000 nm
1000 nm – 2000 nm
3.2 % – 1.6 %
varies with wavelength 1.6 % – 0.8 %
varies with wavelength
0.8 % – 1 %
varies with wavelength
1 % – 4.2 %
(0.000 1 – 0.25) Wm-2nm-1
Tungsten Source, Spectroradiometer
Linearity Power: 0 W to 6 W
Wavelength: 532 nm
0.2 % Other wavelengths on request
OQ 12 Photometric quantities
Illuminance 0.03 lx – 20 lx 2.0 % – 1 % Tungsten Source, Reference photometer
Illuminance 20 lx – 7000 lx 0.01 Reference photometer
Luminance 20 cd m-2  – 1000 cd m-2 1.4 % Reference photometer
Luminous intensity 20 cd – 5000 cd 0.01 Reference photometer and reference ruler.
Correlated colour temperature 2856 K – 3100 K
2500 K – 3200 K
8 K
10 K
Spectroradiometer
Reference filter-radiometer.
Luminous efficacy 30 lm – 30.000 lm
0 W – 3000 W
0.065 Photogoniometer white-light
LED source
CCT 2700 – 6500 K
Luminous flux 30 lm – 30000 lm 0.065 Photogoniometer white-light LED source
CCT 2700 – 6500 K
Luminous efficacy 0 W – 3000 W 1.6 % Integrating sphere,
30 lm – 30000 lm Tungsten source,
LED source,
Including power factor
Luminous flux 30 lm – 30000 lm 1.5 %
Illuminance responsivity A lx-1, V lx-1 0.3 % Against illuminant A for x, y,
and z photopic response
Luminous efficacy 0 W – 3000 W 1.6 % Integrating sphere,
30 lm – 30000 lm Tungsten Source,
LED Source,
Including power factor
Luminous flux 30 lm – 30000 lm 1.5 %
Illuminance responsivity A lx-1, V lx-1 0.3 % Against illuminant A for x, y,
and z photopic response
Colour, emitted, x, y 0 – 0.9 0.0004 Based on spectral irradiance
Colour, emitted, u, v 0 – 0.9 0.0001 – 0.0004 varies Based on spectral irradiance
with measurand
Colour, emitted, u’, v’ 0 – 0.9 0.0002 – 0.0003 varies Based on spectral irradiance
with measurand
Colour rendering, Ra 0 – 100 0.24 Based on spectral irradiance
Percent flicker 0 % - 100 % 0.023 % (abs) Sinusoidal waveform
Flickerperc 0 % - 70.7 % 0.017 % (abs) Sinusoidal waveform
Flicker index 0 - 0.31 8.0E-05 Sinusoidal waveform
OQ 13 Optical system properties Properties of materials
Absorption filters 1 – 0.00001 0.3 % – 1.7 % 200 nm – 380 nm
0.07 % – 1.7 % 380 nm – 1000 nm
Relative measurement
Spectral filters 1 – 0.00001 0.3 % – 1.7 % 200 nm – 400 nm
0.07 % – 1.7 % 380 nm – 1000 nm
Relative measurement
IR 10                                          
Ionising Radiation and Radioactivity
HCS
code
Quantity, Instrument, Measure Measuring range** CMC* Remarks
IR 12 Dosimetric Quantities
Air kerma rate 0.05 nGy/s – 0.3 nGy/s 0.06 137Cs
0.3 nGy/s – 3 μGy/s 0.03 137Cs
1 nGy/s –  3 μGy/s 0.03 60Co
0.3 mGy/s – 25 mGy/s 0.46 % 60Co
3 μGy/s – 1.5 mGy/s 0.85 % 137Cs
30 nGy/s –  3 mGys 1.2 % x-rays W -anode 20 kV – 50 kV
30 nGy/s –  3 mGy/s 0.92 % x-rays W-anode 50 kV – 320 kV
60 μGy/s – 3 mGy/s 1.2 % 192Ir based on calibration coefficients for x-ray
W-anode 250 kV / 2.94 mm Cu and 137Cs (Med. Phys.. 31, 2004 (2826))
Reference Air Kerma Rate 10 nGy/s – 20 μGy/s 1.2 % 192Ir
HCS
code
Quantity, Instrument, Measure Measuring range** CMC* Remarks
Absorbed dose rate to water 0.3 mGy/s – 25 mGy/s 0.84 % 60Co
0.3 mGy/s – 400 mGy/s 0.84 % 1 MV – 25 MV photon beams based on direct measurement with a water calorimeter
1.6 % 1 MV – 25 MV photon beams, beams based on 60Co ND,w with NCS-18, IAEA TRS-398
or equivalent
0.3 mGy/s – 400 mGy/s 3.6 % 4 MeV– 25 MeV electron beams based on 60Co ND,w with NCS-18, IAEA TRS-398
or equivalent.
IR 13 Radioprotection Quantities
Ambient dose equivalent / rate (ISO 4037) 0.2 µSv/h – 1 µSv/h 0.07 137Cs
1 µSv/h – 600 mSv/h 0.05 137Cs
4 µSv/h – 10 mSv/h 0.05 60Co
0.1 mSv/h – 600 mSv/h 0.05 x-rays W-anode 50 kV –320 kV
Personal dose equivalent / rate (ISO 4037) 0.2 µSv/h – 1 µSv/h 0.07 137Cs
1 µSv/h – 600 mSv/h 0.05 137Cs
4 µSv/h – 10 mSv/h 0.05 60Co
0.1 mSv/h – 600 mSv/h 0.05 x-rays W-anode 50 kV – 320 kV
Directional dose equivalent
/ rate (ISO 4037)
0.2 µSv/h – 1 µSv/h 0.07 137Cs
1 µSv/h – 600 mSv/h 0.05 137Cs
4 µSv/h – 10 mSv/h 0.05 60Co
0.1 mSv/h – 600 mSv/h 0.05 x-rays W-anode 50 kV – 320 kV
TE 10 Resistance thermometer
SPRT's and HT-SPRT's -189.344 2 °C (Ar)
-38.8344 °C (Hg)
0.01 °C (TPW) 29.7646 °C (Ga) 156.5985 °C (In) 231.928 °C (Sn)
419.527 °C (Zn)
660.323 °C (Al)
961.78 °C (Ag)
1 mK
0.25 mK
0.12 mK
0.31 mK
0.7 mK
0.6 mK 1 mK
3.4 mK 6 mK
On fixed points
Resistance thermometer -195 °C – -80 °C
-80 °C – 0 °C
0 °C – 30 °C
30 °C – 70 °C
70 °C –  100 °C
100 °C – 280 °C
300 °C – 650 °C
650 °C – 850 °C
6 mK
4 mK
0.7 mK
0.9 mK 4 mK  6 mK 14 mK
0.2 °C
By comparison (including resistance thermometers with transmitter)
TE 30 Thermocouples
Thermocouples type S and R 419.527 °C (Zn)
660.323 °C (Al)
961.78 °C (Ag) 1084.62 °C (Cu)
0.2 °C
0.15 °C
0.15 °C
0.21 °C
On fixed points and secondary fixed points
Thermocouples type B 419.527 °C (Zn)
660.323 °C (Al)
961.78 °C (Ag) 1084.62 °C (Cu)
0.25 °C
0.25 °C
0.25 °C
0.25 °C
On fixed points and secondary fixed points
Thermocouples -195 °C – -80 °C
-80 °C – 280 °C
300 °C – 650 °C
650 °C – 1 050 °C
1 050 °C – 1 550 °C
70 mK
60 mK
60 mK
0.3 °C
1.3 °C – 3.5 °C
By comparison (including thermocouples with transmitter)
TE 41 Self-indicating thermometers -195 °C – -80 °C
-80 °C – 0 °C
0 °C – 30 °C
30 °C – 70 °C
70 °C – 100  °C
120 °C – 280 °C
300 °C – 650 °C
650 °C – 1050 °C
1050 °C – 1550 °C
6 mK
4 mK
0.7 mK
0.9 mK 4 mK  6 mK 14 mK
0.3 °C
1.3 °C – 3.5 °C
By comparison (including liquid-in-glass thermometers)
Indicating thermometers
Dry block calibrator -50 °C – 50 °C
50 °C – 250 °C
250 °C – 419 °C
450 °C – 800 °C
800 °C – 1100 °C
0.05 °C
0.03 °C
0.05 °C
0.5 °C 1 °C
Ice point references 0 °C / room temperature 10 mK
TE 91 Resistance thermometer -200 °C – 850 °C 0.05 °C Electrical calibration
TE 92 Thermocouples over total range
Base metals: J, L, K, T, U, N, E
Noble metals: R, S, B
4 µV Electrical calibration CMC in degrees Celsius depends on Seebeck
coefficient of thermocouple type
TE 100 Contact thermometry
TE 101 Primary references Fixed point cells -189.344 2 °C (Ar)
-38.8344 °C (Hg)
0.01 °C (TPW) 29.7646 °C (Ga) 156.5985 °C (In) 231.928 °C (Sn)
419.527 °C (Zn)
660.323 °C (Al)
961.78 °C (Ag)
1 mK
0.25 mK
0.1 mK
0.26 mK
0.7 mK
0.6 mK 1 mK  3 mK  5 mK
Direct comparison
RH 10 Dew point meters -70 °C – +70 °C 0.04 °C – 0.05 °C Against primary generator in single pressure mode with air and nitrogen
RH 13 Relative Humidity sensors 12 %rh – 95 %rh 0.29 %rh – 0.87 %rh By comparison in climatic chamber at atmospheric pressure with air
-9 °C < T < 0 °C
12 %rh – 95 %rh 0.23 %rh – 0.60 %rh 0 °C < T < +70 °C
RH 14 Trace humidity meters 3 µmol/mol – 10 000 µmol/mol
0.1 Mpa
0.3 % – 2.0 % Against primary generator in single pressure mode with air and nitrogen
RH 20 Other instruments for humidity -9 °C – 18 °C
18 °C – 25 °C
25 °C – 70 °C
0.048 °C – 0.025 °C
0.025 °C
0.025 °C – 0.081 °C
By comparison in climatic chamber at atmospheric pressure with air
Air temperature
RH 30 Generators for humidity -10 °C – 70 °C 0.3 – 0.8 %rh By comparison with dew point meter and air temperature sensor at atmospheric pressure
RH 36 Trace humidity in air and nitrogen 3 µmol/mol – 1000 µmol/mol 4.7 % - 1.4 % By comparison with dewpoint meter
CH 01 Analytical instruments/monitors Calibration of gas monitors and gas diluters
Responsive imageGas monitors for the following components
CO in N2
CO2  in N2
NO in N2
NO2  in N2
SO2  in N2
C3H8  in N2
O2  in N2
C2H5OH in N2
H2S in N2
CH4  in N2
N2O in N2
NH3  in N2
Mole fractions
1·10-6  – 10·10-2
10·10-6  – 20·10-2
1·10-6  – 1·10-2
1·10-6  – 1·10-3
10·10-6  – 1·10-2
10·10-6  – 5·10-2
100·10-6  – 22·10-2
100·10-6  – 1·10-3
10·10-6  – 10·10-3
1·10-6  – 100·10-6
0.3·10-6  – 30·10-6
30·10-6  – 300·10-6
0.5 % – 5 % relative Gas monitor calibration normally consists of zero and span adjustments and linearity check, using certified gas mixtures.
O3  in purified air 20·10-9  – 500·10-9 (2 - 1.6) % Calibration of monitors and ozone generators
Mercury in air 0.1 µg m-3  – 2.1 µg m-3 0.05 Calibration of mercury monitors and generators using gas mixtures prepared by diffusion (ISO6142-8).
Calibrations are performed at normal conditions of temperature (293.15 K) and pressure (101.325 kPa).
Mercury in air 5 µg m-3  – 100 µg m-3 0.04 Calibration of mercury monitors and generators using gas mixtures prepared by diffusion (ISO6142-8).
Calibrations are performed at normal conditions of temperature (293.15 K) and pressure (101.325 kPa).
Mercury in sorption tubes 2 – 100 ng 0.1 Calibration of mercury monitors and generators using sorbent tubes prepared by sampling (ISO16017-1) of gas mixtures prepared by diffusion (ISO6142-8).
CH 02 Natural gas analysers Performance evaluation according to ISO 10723:2012. Reference materials are the PSM’s of VSL or CGM’s traceable to VSL
RM 20 Gas mixtures CGM’s
Analysed Gas Mixtures Conform  ISO 6143
CO in N2  and synthetic air 0.5·10-6  – 10·10-6 2 % –  0.09 % MRA CMC’s:312177
CO in N2  and synthetic air 10.10-6  – 50·10-2 0.09 % – 0.09 % MRA CMC’s: 312178
CO2  in N2  and synthetic air 0.510-6  – 1010-6 2 % – 0.09 % MRA CMC’s: 312179
CO2  in N2  and synthetic air 10·10-6  – 50·10-2 0.09 % – 0.09 % MRA CMC’s: 312180
CH4  in N2  and synthetic air 0.510-6  – 1010-6 0.4% – 0.3% MRA CMC’s: 312186R
CH4  in N2  and synthetic air 10·10-6  – 2.2·10-2 0.3% – 0.12% MRA CMC’s: 312187R
CH4  in N2 2.2·10-2  – 50·10-2 0.12 % – 0.12 % MRA CMC’s: 312188R
C3H8  in N2  and synthetic air 110-6  – 1010-6 0.2 % – 0.14 % MRA CMC’s: 312189R
C3H8 in N2  and synthetic air 10·10-6  – 1·10-2 0.14 % – 0.12 % MRA CMC’s: 312190R
C3H8 in N2 1·10-2  – 50·10-2 0.12 % – 0.12 % MRA CMC’s: 312191R
O2  in N2 0.510-6  – 1010-6 2 % – 0.08 % MRA CMC’s: 312181
O2  in N2 10·10-6  – 50·10-2 0.08 % – 0.08 % MRA CMC’s: 312182
NO in N2 0.110-6  – 110-6 1.6% – 0.90 % MRA CMC’s: 312016R-3
NO in N2 110-6  – 1010-6 0.9 % – 0.50 % MRA CMC’s: 312017R-3
NO in N2 1010-6  – 110-2 0.5 % – 0.10 % MRA CMC’s: 312192R
NO2  in synth. air 0.1·10-6  – 1000·10-6 3 % –  2%
NO2  in N2 10·10-6  – 1000·10-6 2 % – 1 %
N2O in synth. air or N2 0.3·10-6  – 1000·10-6 3 % – 0.5 %
SO2  in N2  and synthetic air 0.1·10-6  – 1·10-6 3% –  0.9% MRA CMC’s: 312183
SO2  in N2  and synthetic air 1·10-6  – 10·10-6 0.9 % – 0.09 % MRA CMC’s: 312184
SO2  in N2  and synthetic air 10·10-6 – 5·10-2 0.09 % – 0.09 % MRA CMC’s: 312185
H2S in N2
H2S in N2
H2S in CH4
C2H5OH in synth. air or N2
1-C4H9OH in N2
NH3  in N2
H2O in N2  and CH4
1·10-6  – 10·10-6
10·10-6  – 1000·10-6
10·10-6  – 1000·10-6
75·10-6  – 800·10-6
56·10-6  – 64·10-6
30·10-6  – 300·10-6
10·10-6  – 100·10-6
4 % – 2 %
2 % – 1 %
3 % – 2 %
1 % – 0.5 %
1.0 %
0.05
0.05
H2O in CH4  has been measured for a long time and VSL has CMCs for this matrix gas. The actual measurement is performed in the same manner as the measurement in N2
HCl in N2  or in synthetic air 10·10-6  – 300·10-6 5 % – 2.4 % Analysed Gas Mixtures
RM 20 Natural gas Methane Ethane Propane
n-Butane i-Butane
n-Pentane i-Pentane
neo-Pentane n-Hexane Nitrogen
Carbon dioxide Helium Hydrogen
60 % – 99.9 %
0.1 % – 14 %
0.05 % – 10 %
0.01 % – 3  %
0.01 % – 3 %
0.01 % – 0.8 %
0.01 % – 0.8 %
0.01 % – 0.8 %
0.01 % – 0.4 %
0.1 % – 20 %
0.05 % – 20 %
0.05 % – 0.4 %
3.5 % – 15 %
0.2 %
0.5 % – 0.2 %
0.5 % – 0.3 %
0.6 % – 0.2 %
0.6 % – 0.2 %
1 % – 0.4 %
1 % – 0.4 %
2 % – 1 %
1 % – 0.4 %
1.5 % – 0.2 %
1 % – 0.2 %
1 % – 0.4 %
0.4 %    0.2 %
Analysed Gas Mixtures
RM 20 Main refrigerant (MR)
Ethane Propane Nitrogen Methane
20 % mol/mol – 35 % mol/mol 5 % mol/mol – 15 % mol/mol 8 % mol/mol – 16 % mol/mol 45 % mol/mol – 90 % mol/mol 0.5 %
0.5 %
0.5 %
0.5 %
Analysed Gas Mixtures
RM 20 Coke oven gas Hydrogen Methane
Carbon monoxide Carbon dioxide Nitrogen
0.2 % – 70 %
4 % – 35 %
3 % – 70 %
1 % – 25 %
3 % – 45 %
1 % – 0.5 %
1 % – 0.5 %
1 % – 0.5 %
1 % – 0.5 %
1 % – 0.5 %
Analysed Gas Mixtures
RM 20 Refinery gas A Methane Ethane
Ethene Propane Propene
1,3-Butadiene 1-Butene
i-Butene Hydrogen Nitrogen Helium
10 % – 13 %
1 % – 3 %
12 % – 16 %
0.4 % – 0.7 %
3 % – 5 %
0.75 % – 1.5 %
0.4 % – 0.65 %
0.4 % – 0.65 %
7 % – 9 %
3.5 % – 4.5 %
50 % – 60 %
0.4 % – 0.2 %
0.6 % – 0.3 %
0.6 % – 0.3 %
0.6 % – 0.3 %
0.6 % – 0.3 %
2 % – 1 %
2 % – 1 %
2 % – 1 %
1 % – 0.5 %
1 % – 0.5 %
1 % – 0.5 %
Analysed Gas Mixtures
RM 20 Refinery gas B Methane Ethane Propane Hydrogen n–Butane
i-Pentane n-Pentane n-Hexane
Carbon monoxide Carbon dioxide Hydrogen sulphide Nitrogen
10 % – 13 %
1.5 % – 2.5 %
0.4 % – 0.6 %
7 % – 8 %
0.8 % – 4.2 %
0.5 % – 1 %
0.5 % – 1 %
0.01 % – 0.1 %
1 % – 4 %
0.4 % – 0.8 %
1 % – 4 %
60 % – 80 %
0.15 %
0.3 %
0.3 %
0.15 %
0.3 %
0.5 %
0.5 %
0.5 %
0.4 %
0.4 %
0.5 %
0.3 %
Analysed Gas Mixtures
RM 20 Automotive gas
O2 CO CO2 C3H8
0.1 % – 22 %
0.1 % – 9 %
1 % – 18 %
0.005 % – 0.5 %
0.6 % – 0.3 %
0.3 %
0.3 %
0.5 % – 0.3 %
Analysed Gas Mixtures
MRA CMC’s: 312124R
RM 20 Sulphur in Methane Hydrogen sulphide Methyl mercaptane Ethyl mercaptane Carbonyl sulphide Dimethyl sulphide 10·10-6  – 50·10-6 0.03 Analysed Gas Mixtures
RM 20 Stack gas Carbon monoxide Carbon dioxide
Nitrogen monoxide Sulphur dioxide Propane
10·10-6  – 1 000·10-6
1∙10-2  – 20∙10-2
10·10-6  – 1 000·10-6
10·10-6  – 1 000·10-6
3·10-6  – 1 000·10-6
1 % – 0.15 % Analysed Gas Mixtures
RM 20 VOC (in cylinders) ethane, ethene, Ethyne, propene, propane,
1-Butene, i-Butene,
1,3-Butadiene, n-Butane, i-Butane, cis-2-Butene, trans-2-Butene,
2-methyl-1,3-Butadiene, n-Pentane, i-Pentane, 1-
Pentene, trans-2-Pentene, cis-2-Pentene,n-Hexane, n-Heptane, n-Octane, iso-
Octane, 3-methyl-Pentane, 2-methyl-pentane, Benzene, Toluene, Ethylbenzene,
o-Xyelene, m-Xylene, p-Xylene,
1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene in nitrogen
2·10-9  – 1 000·10-9 5 % – 2 % Analysed Gas Mixtures including
cis-2 Pentene and/or
3 methyl-Pentane only as CGM
RM 20 BTEX
benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene
in nitrogen
2·10-9  – 1 000·10-9 5 % – 2 % Analysed Gas Mixtures
RM 20 Energy gases Helium Hydrogen Methane Nitrogen
Carbon monoxide Carbon dioxide Oxygen
Ethene Ethane Propene Propane n-Butane i-Butane
1,3-Butadiene 1-Butene
i-Butene
n-Pentane i-Pentane
Neo-Pentane n-Hexane
0.025 % – 1 %
0.2 % – 85%
1 % – 99.9 %
0.1 % – 70 %
1 % – 70 %
0.05 % – 45 %
0.2 % - 1.5 %
1.0 % – 16 %
0.002 % – 14 %
0.05 % – 5 %
0.002 % – 10 %
0.01 % – 3 %
0.01 % – 3 %
0.5 % – 1.5 %
0.2 % – 0.8 %
0.2 % – 0.8 %
0.01 % – 1 %
0.01 % – 1 %
0.01 % – 0.8 %
0.01 % – 0.4 %
1 % – 0.5 %
0.5% – 0.2 %
0.3 % – 0.15 %
0.7 % – 0.2 %
1 % – 0.5 %
0.5 % – 0.2 %
1.5 % –1.3 %
0.5 % – 0.2 %
1% – 0.2 %
0.5 % – 0.2 %
2% – 0.2 %
0.5 % – 0.2 %
0.5 % – 0.2 %
0.5 % – 0.2 %
0.5 % – 0.2 %
0.5 % – 0.2 %
0.5 % – 0.2 %
0.5 % – 0.2 %
2%–1%
0.5 % – 0.2 %
RM 20 OVOC in nitrogen
Methanol Ethanol Acetone
1 ·10-6  – 10 ·10-6  mol/mol
1 ·10-6  – 10 ·10-6  mol/mol
1 ·10-6  – 10 ·10-6  mol/mol
5 %
3 %
2 %
Analysed Gas Mixtures
Preparation by a single reference procedure ( gravimetry)
Verification method: GC- FID
RM20 Gas mixtures:
Dynamic generation of standard atmospheres for calibration purposes (air measurements)
Analysed Gas Mixtures Gaseous components with Vapour pressure
< 20 Pa
RM20 VOC (ISO 6145-8/-10)
Benzene, toluene, ethylbenzene, m-xylene, o-xylene, p-xylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, n-hexane, n-heptane,
n-octane, dichloromethane, trichloromethane,
1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, trichloroethene,
tetrachloroethene, ethyl acetate, 2-butanone,
1-butanol, methyl-t-butyl ether
1·10-9  – 1·10-6 0.02 Analysed Gas Mixtures Preparation by diffusion / permeation (ISO 6145,
parts 8 and 10)
Hexachloro-1,3-butadiene, formaldehyde, acetaldehyde, acrolein, hexanal, decanal, furfural, cyclohexanone
1,1-dichloroethene, Cis-1,2-dichloroethene in air
1·10-9  – 1·10-6 0.04 Analysed Gas Mixtures Preparation by diffusion / permeation (ISO 6145,
parts 8 and 10)
RM20 VOC (ISO 6145-4)
Benzene, toluene, m-xylene, Ethylbenzene, styrene,
1,1,1-trichloroethane, trichloroethene, tetrachloroethene, halothane, acetone, methanol, ethanol,
n-propanol in air
1·10-6  – 1·10-3 0.03 Analysed Gas Mixtures Preparation by continuous injection (ISO 6145, part 4)
RM20 VOC (ISO 6145-4/-7)
1,3-Butadiene Vinyl chloride in air
40·10-9  – 100·10-9
0.1·10-6  – 10·10-6
3 %
5 % – 3 %
Analysed Gas Mixtures Preparation by diffusion / permeation (ISO 6145,
parts 4 and 7)
RM20 S-VOCs (ISO 6145-4)
2,5-di-tert-butyl-4- hydroxytoluene
N-decane
N-dodecane Styrene
Dodecamethylcyclohexasilo xane
Dimethyl phthalate N-tetradecane Naphthalene
N-Hexadecane Benzyl alcohol N-octadecane N-Eicosane
Diethyl phthalate Dibutyl phthalate
10 ng – 1000 ng 5 %
5 %
5 %
5 %
6 %
6 %
7 %
8 %
9 %
10 %
11 %
11 %
12 %
12 %
Prepared by continuous syringe injection (ISO 6145-4)
Verification method: ATD- GC-FID
RM20 Siloxanes in methane
(in cylinder) Hexamethyldisiloxane (L2) Octamethyltrisiloxane (L3) Hexamethylcyclotrisiloxane (D3)
Octamethyl- cyclotetrasiloxane (D4) Decamethyl- cyclopentasiloxane (D5)
0.5·10-6  – 50·10-6  mol/mol
0.3·10-6  – 35·10-6  mol/mol
0.3·10-6  – 20·10-6  mol/mol
0.2·10-6  – 9·10-6  mol/mol
0.1·10-6 – 3·10-6  mol/mol
2 %
2 %
3 %
3 %
4 %
Verification method: GC- FID
CGM’s
RM 20 High purity Hydrogen
CO
CO2
N2
O2
hydrocarbons
H2O

5·10-9  – 500·10-9
1·10-9  – 500·10-9
0.1·10-6  – 10·10-6
100·10-9  – 1 000·10-9
10·10-9  – 1 000·10-9
1·10-6  – 100·10-6

30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
Purity analyses of high purity
gases
High purity Nitrogen
CO
CO2
Ar
O2
hydrocarbons
H2O

5·10-9  – 500·10-9
1·10-9  – 500·10-9
100·10-9  – 1 000·10-9
100·10-9  – 1 000·10-9
10·10-9  – 1 000·10-9
1·10-6  – 100·10-6

30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
Purity analyses of high purity
gases
RM20 High purity Helium
CO
CO2
N2
O2
hydrocarbons
H2O

5·10-9  – 500·10-9
1·10-9  – 500·10-9
0.1·10-6  – 10·10-6
100·10-9  – 1 000·10-9
10·10-9  – 1 000·10-9
1·10-6  – 100·10-6

30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
Purity analyses of high purity
gases
RM20 High purity Synthetic air
CO
CO2
NOx
SO2
hydrocarbons
H2O

5·10-9  – 500·10-9
1·10-9  – 500·10-9
50·10-9  – 1 000·10-9
50·10-9  – 1 000·10-9
10·10-9  – 1 000·10-9
1·10-6  – 100·10-6

30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
Purity analyses of high purity
gases
RM 20 High purity Methane
CO2
N2
O2
H2O
C2H6
Higher hydrocarbons

1·10-9  – 500·10-9
0.1·10-6  – 10·10-6
100·10-9  – 1 000·10-9
1·10-6  – 100·10-6
1·10-6  – 100·10-6
10·10-9  – 1 000·10-9

30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
30 % – 5 %
Purity analyses of high purity
gases
RM 20 Single and Multi- Component Gas Mixtures containing: permanent gases, hydrocarbons up to n-C6H14, automotive gas mixtures, stack gas mixtures, sulphur components BTEX mixtures, noble gases, greenhouse gases, NH3,
HNO3, H2O, SF6, HCl
in Nitrogen, Synthetic Air, Methane, Helium, Hydrogen, Argon
0.1·10-6  – 50·10-2 mol/mol 10% - 0.1% Analysed Gas Mixtures Preparation by a single reference procedure (gravimetry)
Verification method selected from: ND-IR, ND-UV, photo acoustic-IR, cavity ring down spectroscopy, chemiluminescence, pulsed fluorescence-UV, electrochemical and/or paramagnetic techniques, GC-TCD, GC-FID, GC- PDECD, GC-SCD and/or GC- PDHID.
RM 20 Single and Multi- Component Gas Mixtures containing:
VOCs, s-VOCs, OVOCs,
BTEX, alcohols
in Nitrogen, Synthetic Air, Methane, Helium, Hydrogen, Argon
0.1·10-9  – 1000·10-6
mol/mol
30% - 0.5% Analysed Gas Mixtures Preparation by a single reference procedure (gravimetry)
Verification method selected from: ND-IR, ND-UV, photo acoustic-IR, cavity ring down spectroscopy, chemiluminescence, pulsed fluorescence-UV, electrochemical and/or paramagnetic techniques, GC-TCD, GC-FID, GC- PDECD, GC-SCD and/or GC- PDHID.