LF00 | DC/LF Electricity | |||
HCS
code
|
Measured quantity, Range | Frequency | CMC | Remarks |
LF 11 |
Direct Voltage 1 V and 1.018 V |
1.0·10-7·U | Josephson standard | |
10 V | 5·10-8·U | Josephson standard | ||
Gain -1 mV – +1 mV -10 mV – +10 mV -100 mV – +100 mV -1 V – +1 V |
2.0·10-6·U 4·10-7·U 3·10-7·U 2·10-7·U |
Gain of range of multimeter Josephson standard In steps of about 145 microvolt. |
||
Non linearity -1 mV – +1 mV -10 mV – +10 mV -100 mV – +100 mV -1 V – +1 V |
2 nV 3 nV 5 nV 10 nV |
Non-linearity of range of multimeter Josephson standard In steps of about 145 microvolt. |
||
Voltage ratio -1 mV – +1 mV -10 mV – +10 mV -100 mV – +100 mV -1 V – +1 V |
2.0·10-6·U1/U2 3·10-7·U1/U2 5·10-8·U1/U2 1.0·10-8·U1/U2 |
Voltage ratio within range of multimeter Josephson standard In steps of about 145 microvolt. |
||
Uncertainty scales with ratio for | ||||
U1 > U2 | ||||
1 V and 1.018 V 10 V 1 mV 10 mV 100 mV 1 V 10 V 100 V 1 000 V |
5·10-7·U 3·10-7·U 1.1·10-4·U 1.1·10-5·U 1.4·10-6·U 1.7·10-6·U 1.1·10-6·U 1.6·10-6·U 1.7·10-6·U |
Zener reference Zener reference Measuring at multifunction facility |
||
0 µV – 100 mV 100 mV – 10 V 10 V – 1 100 V |
2.0·10-4·U – 3·10-6·U + 20 nV 3·10-6·U – 2.0·10-6·U 2.0·10-6·U – 5·10-6·U |
Measuring at multifunction facility | ||
1 mV 10 mV 100 mV 1 V 10 V 100 V 1 000 V |
2.1·10-4·U 2.1·10-5·U 2.7·10-6·U 1.3·10-6·U 6·10-7·U 8·10-7·U 1.2·10-6·U |
Generating at multifunction facility | ||
0 µV – 1 mV 1 mV – 10 mV 10 mV – 100 mV 100 mV – 1 100 V |
3·10-4·U + 20 nV 3·10-4·U – 3·10-5·U 3·10-5·U – 3·10-6·U 2.0·10-6·U |
Generating at multifunction facility | ||
LF 12 |
Direct Voltage Ratio 10V/V –1·106 V/V |
1.0·10-5 V/V – 5·10-5 V/V | Input 1 kV – 200 kV | |
LF 13 |
Direct High Voltage 1 kV – 200 kV |
1.0·10-5·U – 5·10-5·U | ||
LF 21 |
Direct Current 0.01 pA – 1 pA 1 pA – 20 pA 20 pA – 200 pA 0.2 nA – 2 nA 2 nA – 20 nA 20 nA – 200 nA 0.2 µA – 2 µA 2 µA – 20 µA |
0.2 fA 5·10-5·I – 2.0·10-4·I 5·10-5·I 3·10-4·I – 1.0·10-4·I 1.0·10-4·I – 3·10-5·I 3·10-5·I 3·10-5·I – 9·10-6·I 7·10-6·I |
Measuring | |
20 µA – 100 µA 0.1 µA – 100 mA 0.1 µA – 1 A |
7·10-6·I – 5·10-6·I 5·10-6·I 8·10-5·I |
Measuring at multifunction facility | ||
0.01 pA – 1 pA 1 pA – 20 pA 20 pA – 200 pA 0.2 nA – 2 nA 2 nA – 20 nA 20 nA – 200 nA |
0.2 fA 5·10-5·I – 2.0·10-4·I 5·10-5·I 3·10-4·I – 1.0·10-4·I 1.0·10-4·I – 3·10-5·I 3·10-5·I |
Generating | ||
0.2 µA – 2 µA 2 µA – 20 µA 20 µA – 100 µA 0.1 mA – 100 mA 0.1 A – 1 A 1 A – 10 A 10 A – 100 A 10 A – 900 A |
3·10-5·I – 1.0·10-5·I 1.0·10-5·I 5·10-6·I – 3·10-6 I 3·10-6·I 6·10-5·I 1.0·10-4·I 7·10-6·I 7·10-6·I |
Generating at multifunction facility Generating at DC ratio facility Currents up to 900 A possible with devices that allow multiple turns Measuring at DC ratio facility |
||
LF 22 |
Direct Current Ratio 1∙10-4 – 1 1∙10-4 – 1 |
0.7∙10-6 0.4∙10-6 |
Primary current 1 A – 1200 A Primary current 1 A – 1200 A, linearity | |
LF 24 |
Direct Charge 10 pC – 200 pC 200 pC – 200 nC |
2.0·10-3·Q – 4·10-4·Q 4·10-4·Q – 3·10-4·Q |
||
LF 31 |
Alternating Voltage 1 mV – 100 mV 100 mV – 200 mV 200 mV – 2 V 2 V – 20 V 20 V – 30 V 30 V – 60 V 60 V – 200 V 200 V – 1 000 V |
40 Hz – 100 kHz 10 Hz – 1 MHz 10 Hz – 1 MHz 10 Hz – 1 MHz 10 Hz – 500 kHz 10 Hz – 300 kHz 10 Hz – 100 kHz 10 Hz – 100 kHz |
2.5·10-5·U – 3.0·10-3·U 2.0·10-5·U – 4·10-4·U 9·10-6·U – 4·10-4·U 9·10-6·U – 4·10-4·U 1.3·10-5·U – 4·10-4·U 1.5·10-5·U – 1.5·10-4·U 1.5·10-5·U – 9·10-5·U 1.8·10-5·U – 1.0·10-4·U |
at multifunction facility |
1 mV – 130 mV | 10 Hz – 100 kHz | 5·10-7·U – 5·10-4·U | Josephson standard | |
LF 32 |
Alternating Voltage Ratio 1·10-7 V/V – 1 V/V |
400 Hz – 1.6 kHz 400 Hz – 1.6 kHz |
1.0·10-7 V/V (in-phase) 1.0·10-6 V/V (quadrature) | |
1·10-6 V/V – 1 V/V |
50 Hz – 5 kHz 50 Hz – 5 kHz |
2.0·10-6 V/V (in-phase) 1.0·10-5 V/V (quadrature) | ||
1·10-3 V/V – 10 V/V |
16 Hz – 45 Hz 45 Hz – 65 Hz 65 Hz – 300 Hz |
2.5·10-5 V/V 1.0·10-5 V/V 3.0·10-5 V/V |
Input voltage up to 700 V | |
1·10-6 V/V – 10 V/V |
16 Hz – 45 Hz 45 Hz – 65 Hz 65 Hz – 300 Hz |
3.0·10-5 V/V 2.0·10-5 V/V 2.0·10-4 V/V |
Input voltage up to 100 kV On-site: Input voltage up to 500 kV; for voltages above 230 kV, a HV capacitor with known voltage dependence needs to be supplied by the customer |
|
Phase displacement D (- to +) rad |
45 Hz – 65 Hz | 0.9·10-3 rad | Input 1 kV – 100 kV | |
-0.1 rad – +0.1 rad |
16 Hz – 45 Hz 45 Hz – 65 Hz 65 Hz – 300 Hz |
2.5·10-5 rad + 5·10-3·D 1.0·10-5·rad + 5·10-3·D 3.0·10-5 rad + 5·10-3·D (D in rad) |
Input voltage up to 100 kV On-site: Input voltage up to 500 kV; for voltages above 230 kV, a HV capacitor with known voltage dependence needs to be supplied by the customer |
|
LF 33 |
Alternating High Voltage 1 kV – 100 kV |
45 Hz – 65 Hz | 110-4U | |
LF 34 |
AV/DV Transfer 10 mV – 20 mV 20 mV – 100 mV 0.1 mV – 0.2 V 0.2 mV – 0.5 V 0.5 V – 1 V 1 V – 10 V 10 V – 30 V 30 V* – 60 V* 60 V – 100 V 100 V – 1 000 V |
10 Hz – 1 MHz 10 Hz – 1 MHz 10 Hz – 1 MHz 10 Hz – 1 MHz 10 Hz – 1 MHz 10 Hz – 1 MHz 10 Hz – 1 MHz 10 Hz – 500 kHz 10 Hz – 300 kHz 10 Hz – 100 kHz |
4·10-4·U – 8·10-5·U 3·10-4·U – 2.0·10-5·U 2.0·10-4·U – 1.5·10-5·U 1.0·10-4·U – 5·10-6·U 4·10-5·U – 2.0·10-6·U 2.0·10-6·U – 4·10-5·U 5·10-6·U – 6·10-5·U 1.0·10-5·U – 5·10-5·U 1.0·10-5·U – 4·10-5·U 1.0·10-5·U – 1.0·10-4·U |
*) Max. 2.2 107 VHz |
LF 41 |
Alternating Current 200 µA" 2 mA 20 mA 200 mA 2 A 10 A |
10 Hz – 10 kHz 10 Hz – 10 kHz 10 Hz – 10 kHz 10 Hz – 10 kHz 10 Hz – 10 kHz 10 Hz – 10 kHz |
1.0·10-3·I – 3·10-5·l 2.3·10-4·I – 5·10-5·I 2.3·10-4·I – 6·10-5·l 2.3·10-4·I – 8·10-5·I 1.5·10-4·I – 2.3·10-4·I 2.1·10-4·I – 5·10-4·I |
at multifunction facility |
5 A – 5 000 A |
16 Hz – 45 Hz 45 Hz – 65 Hz 65 Hz – 200 Hz 200 Hz – 400 Hz |
20·10-6 · I 20·10-6 · I 25·10-6 · I 35·10-6 · I |
at current ratio facility | |
LF 42 |
Alternating current ratio Magnitude ratio error 0 – 1 |
16 Hz – 45 Hz 45 Hz – 65 Hz 65 Hz – 200 Hz 200 Hz – 400 Hz |
7·10-6 5·10-6 1.0·10-5 1.5·10-5 |
Primary current from 1 mA – 8 kA Increased uncertainty for current-to- voltage transducers |
Phase displacement - rad – + rad |
16 Hz – 45 Hz 45 Hz – 65 Hz 65 Hz – 200 Hz 200 Hz – 400 Hz |
7·10-6 rad 5·10-6 rad 1.0·10-5 rad 1.5·10-5 rad |
Primary current from 1 mA – 8 kA | |
LF 44 | AC/DC Transfer | |||
10 mA – 500 mA 0.5 A – 5 A 5 A – 20 A |
10 Hz – 100 kHz 10 Hz – 100 kHz 10 Hz – 100 kHz |
3·10-5·l – 1.3·10-4·I 4·10-5·l – 2.5·10-4·I 7·10-5·l – 7·10-4·l |
||
LF 50 | Power quality | IEC 61000-4-30 | ||
Voltage unbalance 0 % – 100 % | 50 Hz or 60 Hz | 0.03 % | ||
Harmonics and interharmonics 0.1 V – 250 V 1 mA – 20 A |
40 Hz – 5000 Hz |
0.01 V – 0.03 V 0.1 mA – 2 mA |
resolution 5 Hz resolution 5 Hz |
|
Total harmonic distortion 0.01 % – 100 % |
40 Hz – 5000 Hz | 0.001 % – 0.02 % | Voltage or current | |
Voltage fluctuations 0.01 % – 10 % | 50 Hz – 60 Hz | 0.001 % – 0.003 % |
10 mHz – 40 Hz modulation; Pst from 0.2 – 10 (IEC 61000-4-15) |
|
LF 50 | Active power 0 kW – 48 kW | 45 Hz – 65 Hz | 1.510-5 W/VA |
1 V – 600 V 1 mA – 80 A 0 cos(φ) 1 inductive or capacitive Minimum apparent power 1 mVA |
0 MW – 500 MW | 45 Hz – 65 Hz | 5·10-5 W/VA |
Single phase 0.05 kV – 100 kV 0.1 A – 5 000 A 0 cos(φ) 1, inductive or capacitive Minimum apparent power 5 VA |
|
0 GW – 1.5 GW | 45 Hz – 65 Hz | 5·10-5 W/VA |
Three-phase 0.05 kV – 100 kV 0.1 A – 5 000 A 0 cos(φ) 1, inductive or capacitive Minimum apparent power 15 VA |
|
0 MW – 200 MW | 45 Hz – 65 Hz | 2.0·10-5 W/VA |
Single phase – Loss Power 0.1 kV – 230 kV 0.1 A – 2 000 A 0 cos(φ) 1, inductive or capacitive Minimum apparent power 10 VA |
|
0 MW – 600 MW | 45 Hz – 65 Hz | 2.0·10-5 W/VA |
Three-phase – Loss Power 0.1 kV – 230 kV 0.1 A – 2 000 A 0 cos(φ) 1, inductive or capacitive Minimum apparent power 10 VA |
|
Apparent power 1 mVA – 48 kVA | 45 Hz – 65 Hz | 1.510-5 VA/VA |
1 V – 600 V 1 mA – 80 A |
|
5 VA – 500 MVA | 45 Hz – 65 Hz | 5·10-5 VA/VA |
Single phase 0.05 kV – 100 kV 0.1 A – 5 000 A |
|
15 VA – 1.5 GVA | 45 Hz – 65 Hz | 5·10-5 VA/VA |
Three-phase 0.05 kV – 100 kV 0.1 A – 5 000 A |
|
Energy | ||||
0 MWh – 8 MWh | 45 Hz – 65 Hz |
5·10-5 Wh/VAh – 3·10-4 Wh/VAh |
Single phase 30 V – 600 V 0.02 A – 80 A 0 cos(φ) 1, inductive or capacitive Minimum apparent power 0.6 VA Measurement time 1 min – 1 Week |
|
0 MWh – 24 MWh | 45 Hz – 65 Hz |
5·10-5 Wh/VAh – 3·10-4 Wh/VAh |
Three-phase 30 V – 600 V Line to Ground 0.02 A – 80 A per phase 0 cos(φ) 1, inductive or capacitive Minimum apparent power 1.8 VA Measurement time 1 min – 1 Week |
|
0 GWh – 84 GWh | 45 Hz – 65 Hz |
5·10-5 Wh/VAh – 3·10-4 Wh/VAh |
Single phase 0.05 kV – 100 kV 0.1 A – 5 000 A 0 cos(φ) 1, inductive or capacitive Minimum apparent power 5 VA Measurement time 1 min – 1 Week |
|
0 GWh – 252 GWh | 45 Hz – 65 Hz |
5·10-5 Wh/VAh – 3·10-4 Wh/VAh |
Three-phase 0.05 kV – 100 kV Line to Ground 0.1 A – 5 000 A per phase 0 cos(φ) 1, inductive or capacitive Minimum apparent power 15 VA Measurement time 1 min – 1 Week |
|
LF 51 | Power factor/cos(φ) | |||
0 – ±1 | 45 Hz – 65 Hz | 1.0·10-6 – 3.5·10-6 | ||
LF 62 |
DC Resistance 1 µΩ 10 µΩ 100 µΩ 1 mΩ 10 mΩ 100 mΩ |
4·10-5·R 4·10-6·R 1.5·10-6·R 1.0·10-6·R 4·10-7·R 2.0·10-7·R |
||
1 Ω 10 Ω 25 Ω 100 Ω 1 kΩ 10 kΩ |
5·10-8·R 3·10-8·R 3·10-8·R 2.0·10-8·R 2.0·10-8·R 2.0·10-8·R |
|||
6.45 kΩ 12.9 kΩ 100 kΩ 1 MΩ |
3·10-8·R 3·10-8·R 4·10-7·R 5·10-7·R |
|||
10 MΩ 100 MΩ 1 GΩ 10 GΩ 100 GΩ |
8·10-7·R 2.0·10-6·R 4·10-6·R 4·10-6·R 8·10-6·R |
|||
1 TΩ 10 TΩ 100 TΩ 1 PΩ 10 PΩ |
1.5·10-5·R 7.5·10-5·R 1.5·10-4·R 1.0·10-2·R 1.0·10-1·R |
|||
1 Ω 10 Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ 1 MΩ 10 MΩ 100 MΩ |
7·10-5·R 2.0·10-5·R 1.5·10-5·R 1.0·10-5·R 1.0·10-5·R 1.0·10-5·R 1.5·10-5·R 6·10-5·R 6·10-4·R |
Measuring at multifunction facility | ||
0 Ω – 10 kΩ 10 kΩ – 100 MΩ |
4·10-5·R – 2.0·10-5·R + 10 µΩ 2.0·10-5·R – 7·10-4·R |
Measuring at multifunction facility | ||
0 Ω 1 and 1.9 Ω 10 and 19 Ω 100 and 190 Ω 1 and 1.9 kΩ 10 and 19 kΩ 100 and 190 kΩ 1 and 1.9 MΩ 10 and 19 MΩ 100 MΩ |
5 µΩ 1.8·10-5·R 5·10-6·R 1.7·10-6·R 2.4·10-6·R 2.4·10-6·R 4·10-6·R 7·10-6·R 2.2·10-5·R 1.0·10-4·R |
Generating at multifunction facility | ||
Temperature coefficient | ||||
0 µΩ/Ω/K – 5 µΩ/Ω/K | 0.015 µΩ/Ω/K |
1 Ω – 10 kΩ 15 C – 30 C |
||
5 µΩ/Ω/K – 200 µΩ/Ω/K |
0.015 µΩ/Ω/K – 0.3 µΩ/Ω/K |
1 Ω – 10 kΩ 15 C – 30 C |
||
0 µΩ/Ω/K – 5 µΩ/Ω/K | 0.1 µΩ/Ω/K |
10 kΩ – 10 MΩ 15 C – 30 C |
||
5 µΩ/Ω/K – 200 µΩ/Ω/K |
0.1 µΩ/Ω/K – 0.3 µΩ/Ω/K |
10 kΩ 10 MΩ 15 C – 30 C |
||
LF 63 |
AC Resistance Real component 0 0 0 0 10 – 100 10 – 100 100 – 1 k 100 – 1 k 1 k – 10 k 1 k – 10 k 10 k – 100 k 10 k – 100 k 100 k – 1 M 100 k – 1 M |
50 Hz – 2 kHz 2 kHz – 10 kHz 50 Hz – 2 kHz 2 kHz – 10 kHz 50 Hz – 2 kHz 2 kHz – 10 kHz 50 Hz – 2 kHz 2 kHz – 10 kHz 50 Hz – 2 kHz 2 kHz – 10 kHz 50 Hz – 2 kHz 2 kHz – 10 kHz |
2 m - 5 m 2 m - 10 m 3·10-5·R – 2.0·10-4·R 6·10-5 ·R – 1.0·10-3·R 2.0·10-5·R – 1.4·10-4·R 4·10-5·R – 7·10-4·R 1.0·10-5·R – 4·10-5·R 1.4·10-5·R – 5·10-4·R 1.0·10-5·R – 1.0·10-4·R 1.4·10-5·R – 1.6·10-4·R 2.0·10-5·R – 1.4·10-4·R 4·10-5·R – 7·10-4·R |
|
AC Resistance Imaginary component -1.0 m/ – +1.0 m/ for Rnom = 10 – 100 -1.0 m/ – +1.0 m/ for Rnom = 100 – 1 k -1.0 m/ – +1.0 m/ for Rnom = 1 k – 10 k -1.0 m/ – +1.0 m/ for Rnom = 10 k – 100 k -1.0 m/ – +1.0 m/ for Rnom = 100 k – 1 M |
50 Hz – 2 kHz 2 kHz – 10 kHz 50 Hz – 2 kHz 2 kHz – 10 kHz 50 Hz – 2 kHz 2 kHz – 10 kHz 50 Hz – 2 kHz 2 kHz – 10 kHz 50 Hz – 2 kHz 2 kHz – 10 kHz |
1.3·10-4·R – 5·10-4·R 3·10-4·R – 1.4·10-3·R 1.0·10-4·R – 3·10-4·R 2·10-4 – 1.0·10-3·R 3·10-5·R – 2.0·10-4·R 6·10-5·R – 7·10-4·R 3·10-5·R – 2·10-4·R 6·10-5·R – 7·10-4·R 1.0·10-4·R – 3·10-4·R 1.4·10-4·R – 1.0·10-3·R |
Values and uncertainties are given as relative values with respect to the nominal resistance value Rnom | |
LF 64 | Capacitance | |||
10 pF 100 pF 1 pF – 1 000 pF 10 nF – 1 µF |
1 kHz; 1.592 kHz 1 kHz; 1.592 kHz 1 kHz 1 kHz |
3·10-7·C 3·10-7·C 5·10-6·C 1.0·10-5·C – 5·10-5·C |
For measurements made using a three terminal configuration. Measurements can also be made in a two terminal configuration over the same capacitance and frequency range but the uncertainties will be increased. |
|
0 pF 0 pF 1 pF 1 pF 10 pf 10 pF 100 pF 100 pF 1 nF 1 nF 10 nF 10 nF 100 nF 100 nF 1 µF 1 µF |
50 Hz – 1 kHz 1 kHz – 10 kHz 50 Hz – 1 kHz 1 kHz – 10 kHz 50 Hz – 1 kHz 1 kHz – 10 kHz 50 Hz – 1 kHz 1 kHz – 10 kHz 50 Hz – 1 kHz 1 kHz – 10 kHz 50 Hz – 1 kHz 1 kHz – 10 kHz 50 Hz – 1 kHz 1 kHz – 10 kHz 50 Hz – 1 kHz 1 kHz – 10 kHz |
0.1 fF – 5 aF 5 aF – 0.04 fF 1.0·10-4·C – 5·10-6·C 5·10-6·C – 4·10-5·C 8·10-5·C – 3·10-6·C 3·10-6·C – 4·10-5·C 8·10-5·C – 3·10-6·C 3·10-6·C – 4·10-5·C 8·10-5·C – 5·10-6·C 5·10-6·C – 6·10-5·C 1.5·10-4·C – 1.0·10-5·C 1.0·10-5·C – 1.5·10-4·C 3·10-4·C – 2.0·10-5·C 2.0·10-5·C – 3.1·10-4·C 6·10-4·C – 5·10-5·C 5·10-5·C – 7·10-4·C |
||
LF 65 | 10 pF – 100 nF | 45 Hz – 65 Hz | 2.0·10-5·C | Input voltage 1 kV – 100 kV Current 5 µA – 10 A |
LF 67 | Inductance | |||
0 µH | 1 kHz | 0.1 µH | ||
100 µH | 1 kHz | 3·10-4·L | ||
1 mH | 1 kHz | 2.0·10-4·L | ||
10 mH | 1 kHz | 2.0·10-4·L | ||
100 mH |
400 Hz 1 kHz 1.592 kHz |
1.5·10-4·L 1.5·10-4·L 1.5·10-4·L |
||
1 H |
100 Hz 200 Hz 400 Hz 1 kHz 1.592 kHz |
3·10-4·L 2.0·10-4·L 1.5·10-4·L 1.5·10-4·L 1.5·10-4·L |
||
10 H |
100 Hz 200 Hz 400 Hz 1 kHz |
3·10-4·L 2.0·10-4·L 1.5 ·10-4·L 2.0·10-4·L |
||
LF 68 |
Dissipation factor DF -0.1 – 0.1 |
45 Hz – 65 Hz | 1.0·10-5 + 5·10-3·DF | Input voltage 1 kV – 100 kV Current 5 µA – 10 A |
RF 21 |
Impedance (reflection factor) |ρ | 1 |
9 kHz – 18 GHz 9 kHz – 18 GHz 9 kHz – 33 GHz 9 kHz – 40 GHz 9 kHz – 50 GHz |
0.002 + 0.001·ρ2 – 0.003 + 0.001·ρ2 0.003 + 0.001·ρ2 – 0.004 + 0.001·ρ2 0.003 + 0.001·ρ2 – 0.004 + 0.002·ρ2 0.005 + 0.003·ρ2 – 0.012 + 0.004·ρ2 0.003 + 0.003·ρ2 – 0.005 + 0.004·ρ2 |
GPC7 (50 Ω) Type-N (50 Ω) 3.5 mm (50 Ω) Type-K 2.92 mm (50 Ω) 2.40 mm (50 Ω) |
RF 22 | Attenuation | |||
L = 0 dB – 50 dB L = 50 dB – 60 dB L = 60 dB – 70 dB L = 70 dB – 80 dB | 50 kHz – 18 GHz |
(0.010 + 0.001·L) dB 0.080 dB – 0.090 dB 0.180 dB – 0.220 dB 0.550 dB – 0.680 dB |
GPC7, Type-N (50 Ω) | |
L = 0 dB – 50 dB L = 50 dB – 60 dB |
50 kHz – 33 GHz |
(0.010 + 0.001·L) dB 0.080 dB – 0.120 dB |
3.5 mm (50 Ω) | |
L = 0 dB – 50 dB L = 50 dB – 60 dB |
50 kHz – 40 GHz |
(0.010 + 0.001·L) dB 0.080 dB – 0.120 dB |
Type-K 2.92 mm (50 Ω) | |
L = 0 dB – 50 dB L = 50 dB – 60 dB |
50 kHz – 50 GHz |
(0.010 + 0.001·L) dB 0.080 dB – 0.120 dB |
2.40 mm (50 Ω) | |
RF 30 | RF Power | |||
Calibration Factor 0 – 1 |
9 kHz – 18 GHz 9 kHz – 33 GHz 9 kHz – 50 GHz |
0.005·K – 0.015·K 0.005·K – 0.020·K 0.005·K – 0.030·K |
GPC7, Type-N (50 Ω) 3.5 mm (50 Ω) 2.40 mm (50 Ω) |
|
cf = Calibration factor | ||||
P = 1 μW – 10 mW | ||||
Absolute Power 1 μW – 10 mW |
9 kHz – 18 GHz 9 kHz – 33 GHz 9 kHz – 50 GHz |
0.005·P – 0.015·P 0.005·P – 0.020·P 0.005·P – 0.030·P |
GPC7, Type-N (50 Ω) 3.5 mm (50 Ω) 2.40 mm (50 Ω) |
|
TF 11 | ||||
Local clock versus UTC (VSL) 0 ns – 1 s |
1.0 ns |
2 Um = 0.1 V – 10 V tavg ≥ 10 ks |
||
Local clock versus UTC 0 ns – 1 s | 10 ns |
2 Um = 0.1 V – 10 V tavg ≥ 10 ks |
||
Local clock versus UTC NTP time server -1 s to +1 s |
0.5 ms |
Via Network Time Protocol (NTP) On location |
||
Local clock versus UTC PTP time server -1 s to +1 s |
1 µs |
Via Precision Time Protocol On location |
||
TF 21 | Frequency | |||
Frequency measurement | 5; 10 MHz | 2.0·10-13·f |
2 Um = 0.1 V – 1 V tavg ≥ 10 ks |
|
1 mHz – 1.3 GHz | 2.0·10-10·f ∕ (gate time s) |
2 Um = 0.1 V – 1 V gate time = 1 µs – 10 ks |
||
1.3 GHz – 26 GHz | 1.0 Hz | level: -10 dBm – +7 dBm | ||
Frequency difference | (0.1; 1; 2.5; 5; 10) MHz | 1.0·10-11·f ∕ √(tavg in s) |
2 Um = 0.1 V – 1 V tavg = 0.1 s – 10 ks |
|
Frequency generation | 1, 5, 10 MHz | 2.0·10-13·f |
Ueff ≥1 V tavg ≥ 10 ks |
|
1 kHz – 4.3 GHz | 1.0·10-11·f ∕ √(tavg in s) |
level: -140 dBm – +13 dBm tavg = 0.1s – 10 ks |
||
4 GHz – 26 GHz | 1 Hz | level: -60 dBm – +13 dBm | ||
TF 22 | Time interval | |||
Single shot 0 ns – 1 000 s |
1.0 ns + trigger error | 2 Um = 0.1 V – 10 V | ||
Period 0 ns – 1 000 s |
100 ps | 2 Um = 0.1 V – 10 V periodic signals | ||
Stopwatches, time base 0.01 s/d – 300 s/d |
0.010 s/d | |||
Oscilloscopes, time base | 1.0·10-7 s/s | |||
TF 22 | Time interval | |||
Time delay of optical components 0 ps – 1 µs |
50 ps | Optical component used in CWDM / DWDM optical fibre networks. | ||
Time delay between a 1pps output of locked pair of White Rabbit master and slave -2 ns to 2 ns |
0.1 ns | The length of the optical fibre link between the White Rabbit master and slave is less than 10 m | ||
Optical fibre delay asymmetry from chromatic dispersion -50 ns to 50 ns |
0.1 ns | Wavelengths between 1310 nm and 1610 nm. The product of fibre length in km and wavelength difference in nm > 10. | ||
TF 24 | Rise time | |||
10 ps – 1 ns 1 ns – 1 µs |
2.5 ps – 0.035 ns 0.035 ns – 0.035 µs |
Um = 0.01 V – 0.25 V trep < 200 kHZ Ugen terminated in 50 |
||
0.1 ns – 10 ns 10 ns – 1 µs |
0.035 ns – 0.22 ns 0.22 ns – 21 ns |
Um = 0.25 V – 5 V Ugen terminated in 50 |
||
DM 01 | Laser wavelength | |||
vacuum wavelength absolute frequency |
633 nm 474 THz |
0.04 fm 24 kHz |
Stabilised laser of the “mise en pratique”. Optical beat frequency |
|
vacuum wavelength, 0 | 633 nm | 1·10-90 | Stabilised laser. Optical beat frequency | |
Laser interferometer counting system | 0 m – 50 m |
Q[0.01 ; 210-8L] µm, L in m |
Comparison with reference interferometer Environmental sensors and optics of laser interferometer not taken into account MRA NMI Service Identifier 3 |
|
Laser frequency | 474 THz | 4 kHz | Stabilized laser of Mise en Pratique with optical femtosecond comb generator; sample time 10 s | |
Laser vacuum wavelength | 633 nm | 5.4 am | Stabilized laser of Mise en Pratique with optical femtosecond comb generator; sample time 10 s | |
Laser frequency | 563 THz | 4.4 kHz | Stabilized laser of Mise en Pratique with optical femtosecond comb generator; sample time 10 s | |
Laser vacuum wavelength | 532 nm | 4.2 am | Stabilized laser of Mise en Pratique with optical femtosecond comb generator; sample time 10 s | |
laser frequency, 0 | 330 THz – 577 THz | 1·10-9·0 | Stabilized laser with optical femtosecond comb generator; sample time 10 s | |
laser vacuum wavelength, 0 | 530 nm – 1 000 nm | 1·10-9·0 | Stabilized laser with optical femtosecond comb generator; sample time 10 s | |
DM 10 |
Gauge blocks central length steel tungsten carbide |
0.1 mm – 125 mm 0.1 mm – 125 mm |
Q[20 nm ; 2.210-7L] Q[20 nm ; 1.510-7L] |
Interferometry, exact fractions MRA NMI Service Identifier 13 |
Gauge blocks central length steel tungsten carbide |
100 mm – 1 000 mm 100 mm – 1 000 mm |
Q[20 nm ; 2.0·10-7L] Q[20 nm ; 1.3·10-7·L] |
Interferometry, exact fractions | |
DM 10 |
Gauge blocks central length steel tungsten carbide |
0.1 mm – 100 mm 0.1 mm – 100 mm |
Q[0.044 µm;0.91·10-6· L] Q[0.044 µm;0.91·10-6· L] |
Mechanical comparison with reference gauges of the same nominal length and the same material |
Gauge blocks length difference | 1 mm – 100 mm | Q[0.015 µm; 0.2 10-6·L] | Interferometry, exact fractions | |
Gauge blocks coefficient of thermal expansion | -5·10-6 +30·10-6 K-1 | ≥ 5.5·10-8 K-1 |
Interferometry, exact fractions Length artefact: 25 mm – 1 000 mm Temperature range: 18 C – 22 C MRA NMI Service Identifier 15 |
|
Length bar (circular cross section): central length |
100 mm – 1 000 mm | Q[0.22 µm;1.18·10-6·L] | CMM and laser Interferometer | |
Gauge blocks central length | 100 mm – 1 000 mm | Q[0.22 µm ;1.18·10-6·L] | CMM and laser Interferometer | |
Gauge blocks central length | 100 mm – 500 mm |
Q[0.056 µm; 0.82·10-6 ·L] |
Mechanical comparison | |
Step gauges Front faces Rear faces Parallelism | 0 mm – 1 100 mm | Q[0.12 µm ; 0.65·10-6 ·L] Q[0.12 µm ; 0.65·10-6 ·L] Q[0.15 µm] | CMM and laserinterferometer | |
Depth (groove) standard (ISO 5436-1 (1985) type A): step height (depth) H |
0 nm – 3 000 nm | Q[1.4 nm ; 14·10-3·H] | Interference microscope Minimum groove width: 100 µm | |
Thermal expansion artefact (step gauges and others): coefficient of thermal expansion |
-510-6 +30·10-6 K-1 | 1.5·10-7 K-1 |
CMM, laser interferometer with plane mirror Cross section: (5 × 5) mm to (50 × 100) mm Length artefact: 25 mm – 1000 mm Temp range: 16 C – 26 C |
|
Thermal expansion artefact: coefficient of thermal expansion |
-510-6 +30·10-6 K-1 | 5.5·10-8 K-1 |
Interferometry, exact fractions Cross section: (5 × 5) to (20 × 35) mm2 Length artefact: 150 mm – 1 000 mm Temp range: 18 C – 22 C |
|
DM 20 | Precision line scales: line spacing |
Up to 1020 mm expansion coefficient = 8·10-6 K-1 = 3·10-8 K-1 |
Q[0.03 μm ; 5·10-7·L] Q[0.03 μm ; 1.7·10-7·L] |
1-D measuring machine, CCD microscope, laser interferometer |
Precision line scales: line spacing |
0 m – 2 m 0 m – 3 m 0 m – 4 m |
Q[0.62 µm ; 3.0·10-6·L] Q[0.80 µm ; 3.0·10-6·L] Q[0.98 µm ; 3.0·10-6·L] |
1-D measuring machine, CCD microscope, laser interferometer |
|
Levelling rod: line spacing | 0 m – 3 m | Q[20 µm ; 5·10-6·L] | 1-D measuring machine, optical sensor, line scale | |
Levelling rod: spacing between reference line and support | 0 mm – 100 mm | 20 µm | 1-D measuring machine, optical microscope, line scale | |
DM 30 | Length measuring instrument displacement L | 0 m – 20 m | Q[0.2 µm ; 1.010-6L] | Laser interferometer |
Height measuring instrument: error of indicated displacement L | 0 m – 2 m | Q[0.22 µm ; 1710-7L] | Laser interferometer | |
Displacement transducers (inductive, incremental e.g.): displacement L | 0 µm – 12 µm | 8 nm | Digital piezo transducer | |
Displacement transducers (inductive, incremental e.g.): displacement L | 0 mm – 100 mm | Q[0.06 µm ; 1.010-6L] |
1D measuring machine with laser interferometer. resolution: 0.01 µm displacement: 100 mm |
|
1D displacement actuator (dial gauge tester): displacement | 0 mm – 25 mm | Q[0.09 µm ; 1.410-6L] | Laser interferometer | |
Measuring projector: error of indicated length error of indicated angle squareness of measurement axis |
10 mm – 200 mm 0 ° – 360 ° 3 “ – 3 600 “ |
Q[0.4 µm ; 2.2·10-6·L] 2.6 ’ 19 ” |
Grid plate Max. area: (200 × 200) mm MRA NMI Service Identifier 65 |
|
Gauge block mechanical comparator: error of indicated difference D |
-6 µm – +6 µm | 17 nm |
Gauge block set Max gauge block length 100 mm |
|
Laser distance meter (EDM) error of indicated distance L |
500 mm – 50 000 mm | Q[0.7 mm ; 1.5·10-2 ·L] |
50 m measuring bench with laserinterferometer. L in mm |
|
DM 40 | Diameter | |||
External cylinders (plug gauge, piston): diameter D | 2.5 mm – 400 mm |
Q[0.20 µm ; 0.88·10-6 ·D] |
CMM and laser interferometer | |
External cylinders (wires, pin): diameter D | 0.1 mm – 100 mm |
Q[0.20 µm; 1.07·10-6 ·D] 0] µm;1.07·10-6·D] |
1-D measuring machine with laser interferometer. Repeatability ≤ 0.05 µm Influence roundness deviation ≤ 0.03 µm |
|
Internal cylinders (ring): diameter D | 1.5 mm – 4 mm |
Q[0.20 µm ; 0.88·10-6· D] |
CMM, laser interferometer with plane mirror | |
Internal cylinders (ring): diameter D | 4 mm – 400 mm | Q[0.10 µm ; 1.1·10-6·D] | CMM, laser interferometer with plane mirror | |
Spheres (ball): diameter D | 12 mm – 60 mm | Q[0.10 µm ; 0.8·10-6·D] | CMM, laser interferometer with plane mirror | |
Diameter standards (ball): diameter D |
0.5 mm – 12 mm | 0.030 µm |
Interferometry exact fractions, indentation correction Uncertainty in nm D: Diameter in mm |
|
Spheres (ball): diameter D |
0.5 mm – 1.5 mm 1.5 mm – 15 mm |
0.30 µm 0.28 µm |
1D measuring machine with laser interferometer, reference ball | |
DM 50 | Form error | |||
90 steel/granite square: squareness straightness |
90 0 µm – 500 µm |
1 µm 0.2 µm |
Reversal technique on a CMM Orientation: horizontal Max. size: 1 200 mm × 400 mm |
|
90 cylinder square: Squareness | 90 | 0.5 µm (1.5 ”) |
Reversal technique on a CMM Orientation: horizontal Max. length: 1 200 mm Diameter: 50 mm – 300 mm |
|
90 cylinder square: Straightness | 0 µm – 500 µm | 0.2 µm |
Reversal technique on a CMM Orientation: horizontal Max. length: 1 200 mm Diameter: 50 mm – 300 mm |
|
Optical flat: Flatness | 0 µm – 0.3 µm | 22 nm | Fizeau interferometer Diameter: 10 mm – 100 mm | |
DM 50 | Optical flat: Flatness | 0 µm – 25 µm |
Q[0.032 µm ; 1.8·10-10 ·D] |
CMM with electronic levels Diam.: 100 mm – 400 mm D = diameter |
Optical flats: combined parallelism/flatness | 0 µm – 12 µm | 0.044 µm | Gauge block comparator Diameter: 10 mm – 60 mm | |
Surface plate: Flatness | 0 µm – 250 µm | Q[0.32 µm ; 6·10-8·L] |
Electronic levels Minimum size L × L: 0.1 m × 0.1 m L = length of the longest side of the surface plate MRA NMI Service Identifier 49 |
|
Cylindrical artefacts + spheres (ball): roundness deviation R | 0 µm – 2 µm | 60 nm + 0.03·R | Roundness measuring machine, spindle correction. Diameter external cylinders (plugs): 2.5 mm – 160 mm Diameter internal cylinders (rings): 4 mm – 160 mm | |
Sphere (hemispheres): roundness deviation R | 0 µm – 1 µm | 10 nm + 0.030·R | Roundness measuring machine, error separation Diameter: 2.5 mm – 160 mm | |
Straightness artefacts: straightness deviation | 0 µm – 500 µm | 0.2 µm |
Electronic levels; Cylindrical artefacts: Length: 100 mm – 1 100 mm Diameter: 20 mm – 300 mm Cubic artefacts, length: 100 mm – 3 000 mm Width: 25 mm |
|
Levelling rod: form deviation of support |
0 µm – 1 mm | 20 µm | CMM | |
DM 90 | Angle | |||
Autocollimator: error of indicated angle |
0 ’ – 14 ” | 0.1 ” | Sine bar, dial gauge tester MRA NMI Service Identifier 34 | |
Electronic level: error of indicated inclination angle |
0 µm/m – 4 000 µm/m |
0.5 µm/m | Sine bar, dial gauge tester MRA NMI Service Identifier 35 | |
Clinometers: error of indicated inclination angle | 0 – 360 | 0.012 ° | Index table | |
Theodolite | ||||
Horizontal Angle | 0 GON – 400 GON | 2 mGON | Autocollimator and Index Table | |
0 ° – 360 ° | 6 “ | Theodolite turned around | ||
Vertical Angle | -33.3 GON – + 33.3 GON | 2 mGON | ||
- 0 ° – + 30° | 6” | |||
Deviation from level | See Telescopic level | 50 m measuring bench | ||
position | ||||
Telescopic level | 1’ | 0,4” | ||
DM100 | Angle gauges: included angle | 0 – 180 ° | 0.5 ” | Autocollimator and rotary table |
Optical polygons: face angle | 5 – 120 ° | 0.2 ” | 2 autocollimators, full closure No. of faces: 3 – 72 | |
Optical square (pentaprism): deviation angle | 90 | 0.2 ” | 2 autocollimators, full closure | |
MW 10 | Mass | |||
HCS code |
Quantity, Instrument, Measure | Measuring range | Remarks | |
MW 11 | Mass | 1 mg – 100 mg | stainless steel mass standards | |
0.1 g – 1 g | ||||
1 g – 10 g | ||||
10 g – 100 g | ||||
0.1 kg – 1 kg | ||||
1 kg – 10 kg | ||||
10 kg – 20 kg | ||||
PV 00 Pressure and Vacuum |
||||
HCS code |
Quantity, Instrument, Measure | Measuring range | Remarks | |
PV 11 | Absolute pressure |
5 kPa – 350 kPa 350 kPa – 7 000 kPa 7 MPa* – 20 MPa* |
Gas Gas Gas | |
PV 12 | Gauge pressure |
0 kPa – 500 kPa 0.5 MPa – 20 MPa |
0.019 Pa + 15·10–6·pe 0.06 Pa + 15·10–6·pe |
Gas Gas |
Differential pressure | 0 MPa – 10 MPa |
4Pa + 4·10-5·pd + 1,2·10-6·pl |
Gas, max. Line pressure 10 MPa pd= differential pressure pl = Line pressure |
|
Negative Gauge pressure | -0.5 kPa – -100 kPa | 5·10–5·pe | Gas | |
PV 21 | Absolute pressure |
1 MPa* – 80 MPa* 80 MPa* – 500 MPa* |
6 Pa + 4·10-5·p 25 Pa + 65·10-6·p |
Oil Oil |
PV 22 | Gauge pressure |
1 MPa – 80 MPa 80 MPa – 500 MPa |
0.18 Pa +15·10–6·pe 27 Pa + 54·10–6·pe | Oil Oil |
pe = p – pamb; pe = gauge pressure, pamb = ambient pressure * Pressure balance + barometer |
||||
DV 10 Density, Viscosity |
||||
HCS code |
Measuring range | CMC* | Remarks | |
DV 10 | ||||
DV 11 | 600 kg/m3 – 1000 kg/m3 | 0.02% | Liquids, water | |
DV 12 | 0.6 mm2/s – 47 000 mm2/s | 0.1 % – 0.5 % | Newtonian liquids, 15 °C – 60 °C | |
HCS code |
Quantity, Instrument, Measure | Measuring range | CMC* | Remarks |
VL 11 | Volume capacity measures | 0.001 L – 3 000 L 10 L – 3 000 L 0.5 L – 200 L |
0.02 % – 0.01 % 0.02 % 0.02 % |
Dordrecht, on location Weighing method Master meter Volumetric method |
Pipettes | 1 mL – 25 L | 0.005 % – 0.02 % | Weighing method | |
Burettes | 1 mL – 1 L | 0.005 % – 0.02 % | Weighing method | |
Provers (water + mineral products) |
1 L – 650 L 10 L – 650 L 100 L – 30 000 L |
0.01 % – 0.02 % 0.02 % – 0.04 % 0.02 % – 0.04 % |
Weighing method Reference volume Master meter | |
Sinkers (water) | 10 cm3 – 200 cm3 | 0.01 % – 0.02 % | Weighing method | |
Pyknometers (water) | 10 cm3 – 200 cm3 | 0.01 % – 0.02 % | Weighing method | |
FG 11 | Gas Flow rate | Delft | ||
Low Pressure Gas |
210-5 m3/h – 1810-3 m3/h 1810-3 m3/h – 3.5 m3/h |
0.40 % 0.20 % |
Displacement prover system Displacement prover system | |
1 m3/h – 400 m3/h | 0.09 % | Displacement prover system | ||
1610-3 m3/h – 16 m3/h | 0.2 % – 0.4 % | Master meter method | ||
15 m3/h – 15 000 m3/h | 0.15 % | Master meter method | ||
High Pressure Gas | 5 m3/h – 230 m3/h | 0.29 % – 0.06 % | Gas Oil Piston Prover | |
High Pressure Natural Gas |
5 m3/h – 20 m3/h 20 m3/h – 2 000 m3/h |
0.30 % – 0.1 % 0.1 % |
VSL Traceability System (2 mobile transfer units) | |
FG 13 | Velocity of gases | |||
Air velocity | 0.1 m/s – 1.0 m/s | 3.2/v – 1.2 % | Delft | |
1 m/s – 2 m/s | 0.02 | Delft | ||
2 m/s – 35 m/s | 0.01 | Delft | ||
FL 11 | Mass flow rate | Dordrecht | ||
Mass flow meters (water) | 0.001 t/h – 400 t/h | 0.02 % – 0.025 % | Weighing method | |
0.8 t/h – 400 t/h | 0.02 % – 0.025 % | Pipe prover method | ||
0.1 t/h – 400 t/h | 0.04 % – 0.045 % | Master meter method | ||
FL12 | Volume flow rate | Dordrecht | ||
flow meters (water) | 0.001 m3/h – 400 m3/h | 0.02 % – 0.025 % | Weighing method | |
0.8 m3/h – 400 m3/h | 0.02 % – 0.025 % | Pipe prover method | ||
0.1 m3/h – 400 m3/h | 0.04 % – 0.045 % | Master meter method | ||
OQ 10 | Optical Quantities | |||
HCS code |
CMC* | Remarks | ||
OQ 11 | Measuring range | < 1 mW | 0.5 % | 488, 532, 543, 633 nm |
1 mW – 10 mW | 0.8 % | Reference Detector | ||
100 µW/cm2 – 10 mW/cm2 | 0.1 | 365 nm | ||
Reference Detector | ||||
AW-1m2, VW-1m2 | 0.3 % | 400 nm – 950 nm, Reference | ||
detector, Scanning spot | ||||
method | ||||
counts W-1m2 | 0.3 % to 4 % | Spectroradiometer | ||
250 nm to 700 nm | ||||
< 1 mW | Reference detector | |||
300 nm – 380 nm | 0.38 % – 0.29 % | |||
380 nm – 450 nm | 0.29 % – 0.07 % | |||
450 nm – 900 nm | 0.07 % | |||
900 nm – 950 nm | 0.07 % – 0.11 % | |||
950 nm – 1000 nm | 0.11 % – 0.43 % | |||
1000 nm – 1250 nm | 0.9 % – 0.4 % | |||
1250 nm – 1500 nm | 0.4 % | |||
1500 nm – 1600 nm | 0.4 % – 1.5 % | |||
Radiant flux, spectral | 380 nm – 780 nm | 1.4% – 5.3% | Integrating sphere, Tungsten Source, LED Source | |
Irradiance, spectral |
250 nm – 400 nm 400 nm – 700 nm 700 nm – 1000 nm 1000 nm – 2000 nm |
3.2 % – 1.6 % varies with wavelength 1.6 % – 0.8 % varies with wavelength 0.8 % – 1 % varies with wavelength 1 % – 4.2 % |
(0.000 1 – 0.25) Wm-2nm-1 Tungsten Source, Spectroradiometer |
|
Linearity |
Power: 0 W to 6 W Wavelength: 532 nm |
0.2 % | Other wavelengths on request | |
OQ 12 | Photometric quantities | |||
Illuminance | 0.03 lx – 20 lx | 2.0 % – 1 % | Tungsten Source, Reference photometer | |
Illuminance | 20 lx – 7000 lx | 0.01 | Reference photometer | |
Luminance | 20 cd m-2 – 1000 cd m-2 | 1.4 % | Reference photometer | |
Luminous intensity | 20 cd – 5000 cd | 0.01 | Reference photometer and reference ruler. | |
Correlated colour temperature |
2856 K – 3100 K 2500 K – 3200 K |
8 K 10 K |
Spectroradiometer Reference filter-radiometer. |
|
Luminous efficacy |
30 lm – 30.000 lm 0 W – 3000 W |
0.065 |
Photogoniometer white-light LED source CCT 2700 – 6500 K |
|
Luminous flux | 30 lm – 30000 lm | 0.065 |
Photogoniometer white-light LED source CCT 2700 – 6500 K |
|
Luminous efficacy | 0 W – 3000 W | 1.6 % | Integrating sphere, | |
30 lm – 30000 lm | Tungsten source, | |||
LED source, | ||||
Including power factor | ||||
Luminous flux | 30 lm – 30000 lm | 1.5 % | ||
Illuminance responsivity | A lx-1, V lx-1 | 0.3 % | Against illuminant A for x, y, | |
and z photopic response | ||||
Luminous efficacy | 0 W – 3000 W | 1.6 % | Integrating sphere, | |
30 lm – 30000 lm | Tungsten Source, | |||
LED Source, | ||||
Including power factor | ||||
Luminous flux | 30 lm – 30000 lm | 1.5 % | ||
Illuminance responsivity | A lx-1, V lx-1 | 0.3 % | Against illuminant A for x, y, | |
and z photopic response | ||||
Colour, emitted, x, y | 0 – 0.9 | 0.0004 | Based on spectral irradiance | |
Colour, emitted, u, v | 0 – 0.9 | 0.0001 – 0.0004 varies | Based on spectral irradiance | |
with measurand | ||||
Colour, emitted, u’, v’ | 0 – 0.9 | 0.0002 – 0.0003 varies | Based on spectral irradiance | |
with measurand | ||||
Colour rendering, Ra | 0 – 100 | 0.24 | Based on spectral irradiance | |
Percent flicker | 0 % - 100 % | 0.023 % (abs) | Sinusoidal waveform | |
Flickerperc | 0 % - 70.7 % | 0.017 % (abs) | Sinusoidal waveform | |
Flicker index | 0 - 0.31 | 8.0E-05 | Sinusoidal waveform | |
OQ 13 | Optical system properties | Properties of materials | ||
Absorption filters | 1 – 0.00001 | 0.3 % – 1.7 % | 200 nm – 380 nm | |
0.07 % – 1.7 % | 380 nm – 1000 nm | |||
Relative measurement | ||||
Spectral filters | 1 – 0.00001 | 0.3 % – 1.7 % | 200 nm – 400 nm | |
0.07 % – 1.7 % | 380 nm – 1000 nm | |||
Relative measurement | ||||
IR 10 Ionising Radiation and Radioactivity |
||||
HCS code |
Quantity, Instrument, Measure | Measuring range** | CMC* | Remarks |
IR 12 | Dosimetric Quantities | |||
Air kerma rate | 0.05 nGy/s – 0.3 nGy/s | 0.06 | 137Cs | |
0.3 nGy/s – 3 μGy/s | 0.03 | 137Cs | ||
1 nGy/s – 3 μGy/s | 0.03 | 60Co | ||
0.3 mGy/s – 25 mGy/s | 0.46 % | 60Co | ||
3 μGy/s – 1.5 mGy/s | 0.85 % | 137Cs | ||
30 nGy/s – 3 mGys | 1.2 % | x-rays W -anode 20 kV – 50 kV | ||
30 nGy/s – 3 mGy/s | 0.92 % | x-rays W-anode 50 kV – 320 kV | ||
60 μGy/s – 3 mGy/s | 1.2 % |
192Ir based on calibration coefficients for x-ray W-anode 250 kV / 2.94 mm Cu and 137Cs (Med. Phys.. 31, 2004 (2826)) |
||
Reference Air Kerma Rate | 10 nGy/s – 20 μGy/s | 1.2 % | 192Ir | |
HCS code |
Quantity, Instrument, Measure | Measuring range** | CMC* | Remarks |
Absorbed dose rate to water | 0.3 mGy/s – 25 mGy/s | 0.84 % | 60Co | |
0.3 mGy/s – 400 mGy/s | 0.84 % | 1 MV – 25 MV photon beams based on direct measurement with a water calorimeter | ||
1.6 % |
1 MV – 25 MV photon beams, beams based on 60Co ND,w with NCS-18, IAEA TRS-398 or equivalent |
|||
0.3 mGy/s – 400 mGy/s | 3.6 % |
4 MeV– 25 MeV electron beams based on 60Co ND,w with NCS-18, IAEA TRS-398 or equivalent. |
||
IR 13 | Radioprotection Quantities | |||
Ambient dose equivalent / rate (ISO 4037) | 0.2 µSv/h – 1 µSv/h | 0.07 | 137Cs | |
1 µSv/h – 600 mSv/h | 0.05 | 137Cs | ||
4 µSv/h – 10 mSv/h | 0.05 | 60Co | ||
0.1 mSv/h – 600 mSv/h | 0.05 | x-rays W-anode 50 kV –320 kV | ||
Personal dose equivalent / rate (ISO 4037) | 0.2 µSv/h – 1 µSv/h | 0.07 | 137Cs | |
1 µSv/h – 600 mSv/h | 0.05 | 137Cs | ||
4 µSv/h – 10 mSv/h | 0.05 | 60Co | ||
0.1 mSv/h – 600 mSv/h | 0.05 | x-rays W-anode 50 kV – 320 kV | ||
Directional dose equivalent / rate (ISO 4037) |
0.2 µSv/h – 1 µSv/h | 0.07 | 137Cs | |
1 µSv/h – 600 mSv/h | 0.05 | 137Cs | ||
4 µSv/h – 10 mSv/h | 0.05 | 60Co | ||
0.1 mSv/h – 600 mSv/h | 0.05 | x-rays W-anode 50 kV – 320 kV | ||
TE 10 | Resistance thermometer | |||
SPRT's and HT-SPRT's |
-189.344 2 °C (Ar) -38.8344 °C (Hg) 0.01 °C (TPW) 29.7646 °C (Ga) 156.5985 °C (In) 231.928 °C (Sn) 419.527 °C (Zn) 660.323 °C (Al) 961.78 °C (Ag) |
1 mK 0.25 mK 0.12 mK 0.31 mK 0.7 mK 0.6 mK 1 mK 3.4 mK 6 mK |
On fixed points | |
Resistance thermometer |
-195 °C – -80 °C -80 °C – 0 °C 0 °C – 30 °C 30 °C – 70 °C 70 °C – 100 °C 100 °C – 280 °C 300 °C – 650 °C 650 °C – 850 °C |
6 mK 4 mK 0.7 mK 0.9 mK 4 mK 6 mK 14 mK 0.2 °C |
By comparison (including resistance thermometers with transmitter) | |
TE 30 | Thermocouples | |||
Thermocouples type S and R |
419.527 °C (Zn) 660.323 °C (Al) 961.78 °C (Ag) 1084.62 °C (Cu) |
0.2 °C 0.15 °C 0.15 °C 0.21 °C |
On fixed points and secondary fixed points | |
Thermocouples type B |
419.527 °C (Zn) 660.323 °C (Al) 961.78 °C (Ag) 1084.62 °C (Cu) |
0.25 °C 0.25 °C 0.25 °C 0.25 °C |
On fixed points and secondary fixed points | |
Thermocouples |
-195 °C – -80 °C -80 °C – 280 °C 300 °C – 650 °C 650 °C – 1 050 °C 1 050 °C – 1 550 °C |
70 mK 60 mK 60 mK 0.3 °C 1.3 °C – 3.5 °C |
By comparison (including thermocouples with transmitter) | |
TE 41 | Self-indicating thermometers |
-195 °C – -80 °C -80 °C – 0 °C 0 °C – 30 °C 30 °C – 70 °C 70 °C – 100 °C 120 °C – 280 °C 300 °C – 650 °C 650 °C – 1050 °C 1050 °C – 1550 °C |
6 mK 4 mK 0.7 mK 0.9 mK 4 mK 6 mK 14 mK 0.3 °C 1.3 °C – 3.5 °C |
By comparison (including liquid-in-glass thermometers) |
Indicating thermometers | ||||
Dry block calibrator |
-50 °C – 50 °C 50 °C – 250 °C 250 °C – 419 °C 450 °C – 800 °C 800 °C – 1100 °C |
0.05 °C 0.03 °C 0.05 °C 0.5 °C 1 °C |
||
Ice point references | 0 °C / room temperature | 10 mK | ||
TE 91 | Resistance thermometer | -200 °C – 850 °C | 0.05 °C | Electrical calibration |
TE 92 | Thermocouples |
over total range Base metals: J, L, K, T, U, N, E Noble metals: R, S, B |
4 µV |
Electrical calibration CMC in degrees Celsius depends on Seebeck coefficient of thermocouple type |
TE 100 | Contact thermometry | |||
TE 101 | Primary references Fixed point cells |
-189.344 2 °C (Ar) -38.8344 °C (Hg) 0.01 °C (TPW) 29.7646 °C (Ga) 156.5985 °C (In) 231.928 °C (Sn) 419.527 °C (Zn) 660.323 °C (Al) 961.78 °C (Ag) |
1 mK 0.25 mK 0.1 mK 0.26 mK 0.7 mK 0.6 mK 1 mK 3 mK 5 mK |
Direct comparison |
RH 10 | Dew point meters | -70 °C – +70 °C | 0.04 °C – 0.05 °C | Against primary generator in single pressure mode with air and nitrogen |
RH 13 | Relative Humidity sensors | 12 %rh – 95 %rh | 0.29 %rh – 0.87 %rh |
By comparison in climatic chamber at atmospheric pressure with air -9 °C < T < 0 °C |
12 %rh – 95 %rh | 0.23 %rh – 0.60 %rh | 0 °C < T < +70 °C | ||
RH 14 | Trace humidity meters |
3 µmol/mol – 10 000 µmol/mol 0.1 Mpa |
0.3 % – 2.0 % | Against primary generator in single pressure mode with air and nitrogen |
RH 20 | Other instruments for humidity |
-9 °C – 18 °C 18 °C – 25 °C 25 °C – 70 °C |
0.048 °C – 0.025 °C 0.025 °C 0.025 °C – 0.081 °C |
By comparison in climatic chamber at atmospheric pressure with air |
Air temperature | ||||
RH 30 | Generators for humidity | -10 °C – 70 °C | 0.3 – 0.8 %rh | By comparison with dew point meter and air temperature sensor at atmospheric pressure |
RH 36 | Trace humidity in air and nitrogen | 3 µmol/mol – 1000 µmol/mol | 4.7 % - 1.4 % | By comparison with dewpoint meter |
CH 01 | Analytical instruments/monitors | Calibration of gas monitors and gas diluters | ||
Gas monitors for the following components CO in N2 CO2 in N2 NO in N2 NO2 in N2 SO2 in N2 C3H8 in N2 O2 in N2 C2H5OH in N2 H2S in N2 CH4 in N2 N2O in N2 NH3 in N2 |
Mole fractions 1·10-6 – 10·10-2 10·10-6 – 20·10-2 1·10-6 – 1·10-2 1·10-6 – 1·10-3 10·10-6 – 1·10-2 10·10-6 – 5·10-2 100·10-6 – 22·10-2 100·10-6 – 1·10-3 10·10-6 – 10·10-3 1·10-6 – 100·10-6 0.3·10-6 – 30·10-6 30·10-6 – 300·10-6 |
0.5 % – 5 % relative | Gas monitor calibration normally consists of zero and span adjustments and linearity check, using certified gas mixtures. | |
O3 in purified air | 20·10-9 – 500·10-9 | (2 - 1.6) % | Calibration of monitors and ozone generators | |
Mercury in air | 0.1 µg m-3 – 2.1 µg m-3 | 0.05 |
Calibration of mercury monitors and generators using gas mixtures prepared by diffusion (ISO6142-8). Calibrations are performed at normal conditions of temperature (293.15 K) and pressure (101.325 kPa). |
|
Mercury in air | 5 µg m-3 – 100 µg m-3 | 0.04 |
Calibration of mercury monitors and generators using gas mixtures prepared by diffusion (ISO6142-8). Calibrations are performed at normal conditions of temperature (293.15 K) and pressure (101.325 kPa). |
|
Mercury in sorption tubes | 2 – 100 ng | 0.1 | Calibration of mercury monitors and generators using sorbent tubes prepared by sampling (ISO16017-1) of gas mixtures prepared by diffusion (ISO6142-8). | |
CH 02 | Natural gas analysers | Performance evaluation according to ISO 10723:2012. Reference materials are the PSM’s of VSL or CGM’s traceable to VSL | ||
RM 20 | Gas mixtures |
CGM’s Analysed Gas Mixtures Conform ISO 6143 |
||
CO in N2 and synthetic air | 0.5·10-6 – 10·10-6 | 2 % – 0.09 % | MRA CMC’s:312177 | |
CO in N2 and synthetic air | 10.10-6 – 50·10-2 | 0.09 % – 0.09 % | MRA CMC’s: 312178 | |
CO2 in N2 and synthetic air | 0.510-6 – 1010-6 | 2 % – 0.09 % | MRA CMC’s: 312179 | |
CO2 in N2 and synthetic air | 10·10-6 – 50·10-2 | 0.09 % – 0.09 % | MRA CMC’s: 312180 | |
CH4 in N2 and synthetic air | 0.510-6 – 1010-6 | 0.4% – 0.3% | MRA CMC’s: 312186R | |
CH4 in N2 and synthetic air | 10·10-6 – 2.2·10-2 | 0.3% – 0.12% | MRA CMC’s: 312187R | |
CH4 in N2 | 2.2·10-2 – 50·10-2 | 0.12 % – 0.12 % | MRA CMC’s: 312188R | |
C3H8 in N2 and synthetic air | 110-6 – 1010-6 | 0.2 % – 0.14 % | MRA CMC’s: 312189R | |
C3H8 in N2 and synthetic air | 10·10-6 – 1·10-2 | 0.14 % – 0.12 % | MRA CMC’s: 312190R | |
C3H8 in N2 | 1·10-2 – 50·10-2 | 0.12 % – 0.12 % | MRA CMC’s: 312191R | |
O2 in N2 | 0.510-6 – 1010-6 | 2 % – 0.08 % | MRA CMC’s: 312181 | |
O2 in N2 | 10·10-6 – 50·10-2 | 0.08 % – 0.08 % | MRA CMC’s: 312182 | |
NO in N2 | 0.110-6 – 110-6 | 1.6% – 0.90 % | MRA CMC’s: 312016R-3 | |
NO in N2 | 110-6 – 1010-6 | 0.9 % – 0.50 % | MRA CMC’s: 312017R-3 | |
NO in N2 | 1010-6 – 110-2 | 0.5 % – 0.10 % | MRA CMC’s: 312192R | |
NO2 in synth. air | 0.1·10-6 – 1000·10-6 | 3 % – 2% | ||
NO2 in N2 | 10·10-6 – 1000·10-6 | 2 % – 1 % | ||
N2O in synth. air or N2 | 0.3·10-6 – 1000·10-6 | 3 % – 0.5 % | ||
SO2 in N2 and synthetic air | 0.1·10-6 – 1·10-6 | 3% – 0.9% | MRA CMC’s: 312183 | |
SO2 in N2 and synthetic air | 1·10-6 – 10·10-6 | 0.9 % – 0.09 % | MRA CMC’s: 312184 | |
SO2 in N2 and synthetic air | 10·10-6 – 5·10-2 | 0.09 % – 0.09 % | MRA CMC’s: 312185 | |
H2S in N2 H2S in N2 H2S in CH4 C2H5OH in synth. air or N2 1-C4H9OH in N2 NH3 in N2 H2O in N2 and CH4 |
1·10-6 – 10·10-6 10·10-6 – 1000·10-6 10·10-6 – 1000·10-6 75·10-6 – 800·10-6 56·10-6 – 64·10-6 30·10-6 – 300·10-6 10·10-6 – 100·10-6 |
4 % – 2 % 2 % – 1 % 3 % – 2 % 1 % – 0.5 % 1.0 % 0.05 0.05 |
H2O in CH4 has been measured for a long time and VSL has CMCs for this matrix gas. The actual measurement is performed in the same manner as the measurement in N2 | |
HCl in N2 or in synthetic air | 10·10-6 – 300·10-6 | 5 % – 2.4 % | Analysed Gas Mixtures | |
RM 20 |
Natural gas Methane Ethane Propane n-Butane i-Butane n-Pentane i-Pentane neo-Pentane n-Hexane Nitrogen Carbon dioxide Helium Hydrogen |
60 % – 99.9 % 0.1 % – 14 % 0.05 % – 10 % 0.01 % – 3 % 0.01 % – 3 % 0.01 % – 0.8 % 0.01 % – 0.8 % 0.01 % – 0.8 % 0.01 % – 0.4 % 0.1 % – 20 % 0.05 % – 20 % 0.05 % – 0.4 % 3.5 % – 15 % |
0.2 % 0.5 % – 0.2 % 0.5 % – 0.3 % 0.6 % – 0.2 % 0.6 % – 0.2 % 1 % – 0.4 % 1 % – 0.4 % 2 % – 1 % 1 % – 0.4 % 1.5 % – 0.2 % 1 % – 0.2 % 1 % – 0.4 % 0.4 % – 0.2 % |
Analysed Gas Mixtures |
RM 20 |
Main refrigerant (MR) Ethane Propane Nitrogen Methane |
20 % mol/mol – 35 % mol/mol 5 % mol/mol – 15 % mol/mol 8 % mol/mol – 16 % mol/mol 45 % mol/mol – 90 % mol/mol |
0.5 % 0.5 % 0.5 % 0.5 % |
Analysed Gas Mixtures |
RM 20 |
Coke oven gas Hydrogen Methane Carbon monoxide Carbon dioxide Nitrogen |
0.2 % – 70 % 4 % – 35 % 3 % – 70 % 1 % – 25 % 3 % – 45 % |
1 % – 0.5 % 1 % – 0.5 % 1 % – 0.5 % 1 % – 0.5 % 1 % – 0.5 % |
Analysed Gas Mixtures |
RM 20 |
Refinery gas A Methane Ethane Ethene Propane Propene 1,3-Butadiene 1-Butene i-Butene Hydrogen Nitrogen Helium |
10 % – 13 % 1 % – 3 % 12 % – 16 % 0.4 % – 0.7 % 3 % – 5 % 0.75 % – 1.5 % 0.4 % – 0.65 % 0.4 % – 0.65 % 7 % – 9 % 3.5 % – 4.5 % 50 % – 60 % |
0.4 % – 0.2 % 0.6 % – 0.3 % 0.6 % – 0.3 % 0.6 % – 0.3 % 0.6 % – 0.3 % 2 % – 1 % 2 % – 1 % 2 % – 1 % 1 % – 0.5 % 1 % – 0.5 % 1 % – 0.5 % |
Analysed Gas Mixtures |
RM 20 |
Refinery gas B Methane Ethane Propane Hydrogen n–Butane i-Pentane n-Pentane n-Hexane Carbon monoxide Carbon dioxide Hydrogen sulphide Nitrogen |
10 % – 13 % 1.5 % – 2.5 % 0.4 % – 0.6 % 7 % – 8 % 0.8 % – 4.2 % 0.5 % – 1 % 0.5 % – 1 % 0.01 % – 0.1 % 1 % – 4 % 0.4 % – 0.8 % 1 % – 4 % 60 % – 80 % |
0.15 % 0.3 % 0.3 % 0.15 % 0.3 % 0.5 % 0.5 % 0.5 % 0.4 % 0.4 % 0.5 % 0.3 % |
Analysed Gas Mixtures |
RM 20 |
Automotive gas O2 CO CO2 C3H8 |
0.1 % – 22 % 0.1 % – 9 % 1 % – 18 % 0.005 % – 0.5 % |
0.6 % – 0.3 % 0.3 % 0.3 % 0.5 % – 0.3 % |
Analysed Gas Mixtures MRA CMC’s: 312124R |
RM 20 | Sulphur in Methane Hydrogen sulphide Methyl mercaptane Ethyl mercaptane Carbonyl sulphide Dimethyl sulphide | 10·10-6 – 50·10-6 | 0.03 | Analysed Gas Mixtures |
RM 20 |
Stack gas Carbon monoxide Carbon dioxide Nitrogen monoxide Sulphur dioxide Propane |
10·10-6 – 1 000·10-6 1∙10-2 – 20∙10-2 10·10-6 – 1 000·10-6 10·10-6 – 1 000·10-6 3·10-6 – 1 000·10-6 |
1 % – 0.15 % | Analysed Gas Mixtures |
RM 20 |
VOC (in cylinders) ethane, ethene, Ethyne, propene, propane, 1-Butene, i-Butene, 1,3-Butadiene, n-Butane, i-Butane, cis-2-Butene, trans-2-Butene, 2-methyl-1,3-Butadiene, n-Pentane, i-Pentane, 1- Pentene, trans-2-Pentene, cis-2-Pentene,n-Hexane, n-Heptane, n-Octane, iso- Octane, 3-methyl-Pentane, 2-methyl-pentane, Benzene, Toluene, Ethylbenzene, o-Xyelene, m-Xylene, p-Xylene, 1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene in nitrogen |
2·10-9 – 1 000·10-9 | 5 % – 2 % |
Analysed Gas Mixtures including cis-2 Pentene and/or 3 methyl-Pentane only as CGM |
RM 20 |
BTEX benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene in nitrogen |
2·10-9 – 1 000·10-9 | 5 % – 2 % | Analysed Gas Mixtures |
RM 20 |
Energy gases Helium Hydrogen Methane Nitrogen Carbon monoxide Carbon dioxide Oxygen Ethene Ethane Propene Propane n-Butane i-Butane 1,3-Butadiene 1-Butene i-Butene n-Pentane i-Pentane Neo-Pentane n-Hexane |
0.025 % – 1 % 0.2 % – 85% 1 % – 99.9 % 0.1 % – 70 % 1 % – 70 % 0.05 % – 45 % 0.2 % - 1.5 % 1.0 % – 16 % 0.002 % – 14 % 0.05 % – 5 % 0.002 % – 10 % 0.01 % – 3 % 0.01 % – 3 % 0.5 % – 1.5 % 0.2 % – 0.8 % 0.2 % – 0.8 % 0.01 % – 1 % 0.01 % – 1 % 0.01 % – 0.8 % 0.01 % – 0.4 % |
1 % – 0.5 % 0.5% – 0.2 % 0.3 % – 0.15 % 0.7 % – 0.2 % 1 % – 0.5 % 0.5 % – 0.2 % 1.5 % –1.3 % 0.5 % – 0.2 % 1% – 0.2 % 0.5 % – 0.2 % 2% – 0.2 % 0.5 % – 0.2 % 0.5 % – 0.2 % 0.5 % – 0.2 % 0.5 % – 0.2 % 0.5 % – 0.2 % 0.5 % – 0.2 % 0.5 % – 0.2 % 2%–1% 0.5 % – 0.2 % |
|
RM 20 |
OVOC in nitrogen Methanol Ethanol Acetone |
1 ·10-6 – 10 ·10-6 mol/mol 1 ·10-6 – 10 ·10-6 mol/mol 1 ·10-6 – 10 ·10-6 mol/mol |
5 % 3 % 2 % |
Analysed Gas Mixtures Preparation by a single reference procedure ( gravimetry) Verification method: GC- FID |
RM20 |
Gas mixtures: Dynamic generation of standard atmospheres for calibration purposes (air measurements) |
Analysed Gas Mixtures Gaseous components with Vapour pressure < 20 Pa |
||
RM20 |
VOC (ISO 6145-8/-10) Benzene, toluene, ethylbenzene, m-xylene, o-xylene, p-xylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, n-hexane, n-heptane, n-octane, dichloromethane, trichloromethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, trichloroethene, tetrachloroethene, ethyl acetate, 2-butanone, 1-butanol, methyl-t-butyl ether |
1·10-9 – 1·10-6 | 0.02 |
Analysed Gas Mixtures Preparation by diffusion / permeation (ISO 6145, parts 8 and 10) |
Hexachloro-1,3-butadiene, formaldehyde, acetaldehyde, acrolein, hexanal, decanal, furfural, cyclohexanone 1,1-dichloroethene, Cis-1,2-dichloroethene in air |
1·10-9 – 1·10-6 | 0.04 |
Analysed Gas Mixtures Preparation by diffusion / permeation (ISO 6145, parts 8 and 10) |
|
RM20 |
VOC (ISO 6145-4) Benzene, toluene, m-xylene, Ethylbenzene, styrene, 1,1,1-trichloroethane, trichloroethene, tetrachloroethene, halothane, acetone, methanol, ethanol, n-propanol in air |
1·10-6 – 1·10-3 | 0.03 | Analysed Gas Mixtures Preparation by continuous injection (ISO 6145, part 4) |
RM20 |
VOC (ISO 6145-4/-7) 1,3-Butadiene Vinyl chloride in air |
40·10-9 – 100·10-9 0.1·10-6 – 10·10-6 |
3 % 5 % – 3 % |
Analysed Gas Mixtures Preparation by diffusion / permeation (ISO 6145, parts 4 and 7) |
RM20 |
S-VOCs (ISO 6145-4) 2,5-di-tert-butyl-4- hydroxytoluene N-decane N-dodecane Styrene Dodecamethylcyclohexasilo xane Dimethyl phthalate N-tetradecane Naphthalene N-Hexadecane Benzyl alcohol N-octadecane N-Eicosane Diethyl phthalate Dibutyl phthalate |
10 ng – 1000 ng |
5 % 5 % 5 % 5 % 6 % 6 % 7 % 8 % 9 % 10 % 11 % 11 % 12 % 12 % |
Prepared by continuous syringe injection (ISO 6145-4) Verification method: ATD- GC-FID |
RM20 |
Siloxanes in methane (in cylinder) Hexamethyldisiloxane (L2) Octamethyltrisiloxane (L3) Hexamethylcyclotrisiloxane (D3) Octamethyl- cyclotetrasiloxane (D4) Decamethyl- cyclopentasiloxane (D5) |
0.5·10-6 – 50·10-6 mol/mol 0.3·10-6 – 35·10-6 mol/mol 0.3·10-6 – 20·10-6 mol/mol 0.2·10-6 – 9·10-6 mol/mol 0.1·10-6 – 3·10-6 mol/mol |
2 % 2 % 3 % 3 % 4 % |
Verification method: GC- FID |
CGM’s | ||||
RM 20 |
High purity Hydrogen CO CO2 N2 O2 hydrocarbons H2O |
5·10-9 – 500·10-9 1·10-9 – 500·10-9 0.1·10-6 – 10·10-6 100·10-9 – 1 000·10-9 10·10-9 – 1 000·10-9 1·10-6 – 100·10-6 |
30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % |
Purity analyses of high purity gases |
High purity Nitrogen CO CO2 Ar O2 hydrocarbons H2O |
5·10-9 – 500·10-9 1·10-9 – 500·10-9 100·10-9 – 1 000·10-9 100·10-9 – 1 000·10-9 10·10-9 – 1 000·10-9 1·10-6 – 100·10-6 |
30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % |
Purity analyses of high purity gases |
|
RM20 |
High purity Helium CO CO2 N2 O2 hydrocarbons H2O |
5·10-9 – 500·10-9 1·10-9 – 500·10-9 0.1·10-6 – 10·10-6 100·10-9 – 1 000·10-9 10·10-9 – 1 000·10-9 1·10-6 – 100·10-6 |
30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % |
Purity analyses of high purity gases |
RM20 |
High purity Synthetic air CO CO2 NOx SO2 hydrocarbons H2O |
5·10-9 – 500·10-9 1·10-9 – 500·10-9 50·10-9 – 1 000·10-9 50·10-9 – 1 000·10-9 10·10-9 – 1 000·10-9 1·10-6 – 100·10-6 |
30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % |
Purity analyses of high purity gases |
RM 20 |
High purity Methane CO2 N2 O2 H2O C2H6 Higher hydrocarbons |
1·10-9 – 500·10-9 0.1·10-6 – 10·10-6 100·10-9 – 1 000·10-9 1·10-6 – 100·10-6 1·10-6 – 100·10-6 10·10-9 – 1 000·10-9 |
30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % 30 % – 5 % |
Purity analyses of high purity gases |
RM 20 |
Single and Multi- Component Gas Mixtures containing: permanent gases, hydrocarbons up to n-C6H14, automotive gas mixtures, stack gas mixtures, sulphur components BTEX mixtures, noble gases, greenhouse gases, NH3, HNO3, H2O, SF6, HCl in Nitrogen, Synthetic Air, Methane, Helium, Hydrogen, Argon |
0.1·10-6 – 50·10-2 mol/mol | 10% - 0.1% |
Analysed Gas Mixtures Preparation by a single reference procedure (gravimetry) Verification method selected from: ND-IR, ND-UV, photo acoustic-IR, cavity ring down spectroscopy, chemiluminescence, pulsed fluorescence-UV, electrochemical and/or paramagnetic techniques, GC-TCD, GC-FID, GC- PDECD, GC-SCD and/or GC- PDHID. |
RM 20 |
Single and Multi- Component Gas Mixtures containing: VOCs, s-VOCs, OVOCs, BTEX, alcohols in Nitrogen, Synthetic Air, Methane, Helium, Hydrogen, Argon |
0.1·10-9 – 1000·10-6 mol/mol |
30% - 0.5% |
Analysed Gas Mixtures Preparation by a single reference procedure (gravimetry) Verification method selected from: ND-IR, ND-UV, photo acoustic-IR, cavity ring down spectroscopy, chemiluminescence, pulsed fluorescence-UV, electrochemical and/or paramagnetic techniques, GC-TCD, GC-FID, GC- PDECD, GC-SCD and/or GC- PDHID. |